These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 28602090)

  • 21. Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria.
    Liao C; Seebeck FP
    Chembiochem; 2017 Nov; 18(21):2115-2118. PubMed ID: 28862368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural insights into a novel nonheme iron-dependent oxygenase in selenoneine biosynthesis.
    Liu M; Yang Y; Huang JW; Dai L; Zheng Y; Cheng S; He H; Chen CC; Guo RT
    Int J Biol Macromol; 2024 Jan; 256(Pt 2):128428. PubMed ID: 38013086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electronic structures and spectroscopic signatures of diiron intermediates generated by O
    Ekanayake DM; Pham D; Probst AL; Miller JR; Popescu CV; Fiedler AT
    Dalton Trans; 2021 Oct; 50(40):14432-14443. PubMed ID: 34570147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metal vs. chalcogen competition in the catalytic mechanism of cysteine dioxygenase.
    Che X; Gao J; Liu Y; Liu C
    J Inorg Biochem; 2013 May; 122():1-7. PubMed ID: 23416309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications.
    Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG
    Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Utilizing the Trispyrazolyl Borate Ligand for the Mimicking of O2-Activating Mononuclear Nonheme Iron Enzymes.
    Sallmann M; Limberg C
    Acc Chem Res; 2015 Oct; 48(10):2734-43. PubMed ID: 26305516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonheme iron-thiolate complexes as structural models of sulfoxide synthase active sites.
    Ekanayake DM; Fischer AA; Elwood ME; Guzek AM; Lindeman SV; Popescu CV; Fiedler AT
    Dalton Trans; 2020 Dec; 49(48):17745-17757. PubMed ID: 33241840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iron(II)-thiolate S-oxygenation by O2: synthetic models of cysteine dioxygenase.
    Jiang Y; Widger LR; Kasper GD; Siegler MA; Goldberg DP
    J Am Chem Soc; 2010 Sep; 132(35):12214-5. PubMed ID: 20712312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How do the thiolate ligand and its relative position control the oxygen activation in the cysteine dioxygenase model?
    Che X; Gao J; Zhang D; Liu C
    J Phys Chem A; 2012 Jun; 116(22):5510-7. PubMed ID: 22587555
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and Functional Differences of Cysteine and 3-Mercaptopropionate Dioxygenases: A Computational Study.
    Yeh CG; Pierides C; Jameson GNL; de Visser SP
    Chemistry; 2021 Oct; 27(55):13793-13806. PubMed ID: 34310770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectroscopic and computational investigation of iron(III) cysteine dioxygenase: implications for the nature of the putative superoxo-Fe(III) intermediate.
    Blaesi EJ; Fox BG; Brunold TC
    Biochemistry; 2014 Sep; 53(36):5759-70. PubMed ID: 25093959
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Second-sphere interactions between the C93-Y157 cross-link and the substrate-bound Fe site influence the O₂ coupling efficiency in mouse cysteine dioxygenase.
    Li W; Blaesi EJ; Pecore MD; Crowell JK; Pierce BS
    Biochemistry; 2013 Dec; 52(51):9104-19. PubMed ID: 24279989
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Arene activation by a nonheme iron(III)-hydroperoxo complex: pathways leading to phenol and ketone products.
    Faponle AS; Banse F; de Visser SP
    J Biol Inorg Chem; 2016 Jul; 21(4):453-62. PubMed ID: 27099221
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Axial and equatorial ligand effects on biomimetic cysteine dioxygenase model complexes.
    Gonzalez-Ovalle LE; Quesne MG; Kumar D; Goldberg DP; de Visser SP
    Org Biomol Chem; 2012 Jul; 10(28):5401-9. PubMed ID: 22714822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the Cys-Tyr Cofactor Biogenesis in Cysteine Dioxygenase by the Genetic Incorporation of Fluorotyrosine.
    Li J; Koto T; Davis I; Liu A
    Biochemistry; 2019 Apr; 58(17):2218-2227. PubMed ID: 30946568
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation Mechanism of Cofactor Cys-Tyr in the Cysteine Dioxygenases (CDO and F
    Wang Y; Yan L; Li X; Zhang S; Wei J; Liu Y
    Inorg Chem; 2021 Jun; 60(11):7844-7856. PubMed ID: 34008401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of cysteine 164 on active site structure in rat cysteine dioxygenase.
    Fellner M; Siakkou E; Faponle AS; Tchesnokov EP; de Visser SP; Wilbanks SM; Jameson GN
    J Biol Inorg Chem; 2016 Jul; 21(4):501-10. PubMed ID: 27193596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Can ferric-superoxide act as a potential oxidant in P450(cam)? QM/MM investigation of hydroxylation, epoxidation, and sulfoxidation.
    Lai W; Shaik S
    J Am Chem Soc; 2011 Apr; 133(14):5444-52. PubMed ID: 21413763
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of the iron-sulfur cluster in Mycobacterium tuberculosis APS reductase: implications for substrate binding and catalysis.
    Carroll KS; Gao H; Chen H; Leary JA; Bertozzi CR
    Biochemistry; 2005 Nov; 44(44):14647-57. PubMed ID: 16262264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A molecular dynamics and quantum mechanics/molecular mechanics study of the catalytic reductase mechanism of methionine sulfoxide reductase A: formation and reduction of a sulfenic acid.
    Dokainish HM; Gauld JW
    Biochemistry; 2013 Mar; 52(10):1814-27. PubMed ID: 23418817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.