These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 28602252)
1. VIIRS captures phytoplankton vertical migration in the NE Gulf of Mexico. Qi L; Hu C; Barnes BB; Lee Z Harmful Algae; 2017 Jun; 66():40-46. PubMed ID: 28602252 [TBL] [Abstract][Full Text] [Related]
2. A harmful algal bloom of Karenia brevis in the northeastern Gulf of Mexico as revealed by MODIS and VIIRS: a comparison. Hu C; Barnes BB; Qi L; Corcoran AA Sensors (Basel); 2015 Jan; 15(2):2873-87. PubMed ID: 25635412 [TBL] [Abstract][Full Text] [Related]
3. Vertical migration of Karenia brevis in the northeastern Gulf of Mexico observed from glider measurements. Hu C; Barnes BB; Qi L; Lembke C; English D Harmful Algae; 2016 Sep; 58():59-65. PubMed ID: 28073459 [TBL] [Abstract][Full Text] [Related]
4. Karenia brevis bloom patterns on the west Florida shelf between 2003 and 2019: Integration of field and satellite observations. Hu C; Yao Y; Cannizzaro JP; Garrett M; Harper M; Markley L; Villac C; Hubbard K Harmful Algae; 2022 Aug; 117():102289. PubMed ID: 35944949 [TBL] [Abstract][Full Text] [Related]
5. Remote sensing of bacterial response to degrading phytoplankton in the Arabian Sea. Priyaja P; Dwivedi R; Sini S; Hatha M; Saravanane N; Sudhakar M Environ Monit Assess; 2016 Dec; 188(12):662. PubMed ID: 27837363 [TBL] [Abstract][Full Text] [Related]
7. Monitoring red tide with satellite imagery and numerical models: a case study in the Arabian Gulf. Zhao J; Ghedira H Mar Pollut Bull; 2014 Feb; 79(1-2):305-13. PubMed ID: 24461701 [TBL] [Abstract][Full Text] [Related]
8. Documenting the duration and chlorophyll pigments of an allochthonous Karenia brevis bloom in the Loxahatchee River Estuary (LRE), Florida. Harris RJ; Arrington DA; Porter D; Lovko V Harmful Algae; 2020 Jul; 97():101851. PubMed ID: 32732046 [TBL] [Abstract][Full Text] [Related]
9. Individual-based modelling of the development and transport of a Karenia mikimotoi bloom on the North-west European continental shelf. Gillibrand PA; Siemering B; Miller PI; Davidson K Harmful Algae; 2016 Mar; 53():118-134. PubMed ID: 28073438 [TBL] [Abstract][Full Text] [Related]
10. Fish sound production in the presence of harmful algal blooms in the eastern Gulf of Mexico. Wall CC; Lembke C; Hu C; Mann DA PLoS One; 2014; 9(12):e114893. PubMed ID: 25551564 [TBL] [Abstract][Full Text] [Related]
11. In situ digital holographic microscopy for rapid detection and monitoring of the harmful dinoflagellate, Karenia brevis. Barua R; Sanborn D; Nyman L; McFarland M; Moore T; Hong J; Garrett M; Nayak AR Harmful Algae; 2023 Mar; 123():102401. PubMed ID: 36894209 [TBL] [Abstract][Full Text] [Related]
12. Remote quantification of Cochlodinium polykrikoides blooms occurring in the East Sea using geostationary ocean color imager (GOCI). Noh JH; Kim W; Son SH; Ahn JH; Park YJ Harmful Algae; 2018 Mar; 73():129-137. PubMed ID: 29602501 [TBL] [Abstract][Full Text] [Related]
13. Novel optical techniques for detecting and classifying toxic dinoflagellate Karenia brevis blooms using satellite imagery. Amin R; Zhou J; Gilerson A; Gross B; Moshary F; Ahmed S Opt Express; 2009 May; 17(11):9126-44. PubMed ID: 19466162 [TBL] [Abstract][Full Text] [Related]
14. An assessment of trends in the frequency and duration of Karenia brevis red tide blooms on the South Texas coast (western Gulf of Mexico). Tominack SA; Coffey KZ; Yoskowitz D; Sutton G; Wetz MS PLoS One; 2020; 15(9):e0239309. PubMed ID: 32946494 [TBL] [Abstract][Full Text] [Related]
15. [Effects of harmful algal bloom on bio-optical properties of coastal water]. Wang L; Zhao DZ; Yang JH; Liu YJ; Wang X; Zou XG Huan Jing Ke Xue; 2011 Oct; 32(10):2855-60. PubMed ID: 22279892 [TBL] [Abstract][Full Text] [Related]
16. [Temporal dynamics of phytoplankton and nutrients during red tides]. Qiu Y; Zhu L; Li J; Liang S; Qi Y Ying Yong Sheng Tai Xue Bao; 2003 Jul; 14(7):1127-30. PubMed ID: 14587335 [TBL] [Abstract][Full Text] [Related]
17. Chlorophyll-a Estimation Around the Antarctica Peninsula Using Satellite Algorithms: Hints from Field Water Leaving Reflectance. Zeng C; Xu H; Fischer AM Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27941596 [TBL] [Abstract][Full Text] [Related]
18. A comparison of the Pac-X trans-Pacific Wave Glider data and satellite data (MODIS, Aquarius, TRMM and VIIRS). Villareal TA; Wilson C PLoS One; 2014; 9(3):e92280. PubMed ID: 24658053 [TBL] [Abstract][Full Text] [Related]
19. Multispectral remote sensing of harmful algal blooms in Lake Champlain, USA. Isenstein EM; Trescott A; Park MH Water Environ Res; 2014 Dec; 86(12):2271-8. PubMed ID: 25654929 [TBL] [Abstract][Full Text] [Related]
20. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Dörnhöfer K; Klinger P; Heege T; Oppelt N Sci Total Environ; 2018 Jan; 612():1200-1214. PubMed ID: 28892864 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]