These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28602252)

  • 21. Seasonal dynamics of terrestrially sourced nitrogen influenced Karenia brevis blooms off Florida's southern Gulf Coast.
    Medina M; Huffaker R; Jawitz JW; Muñoz-Carpena R
    Harmful Algae; 2020 Sep; 98():101900. PubMed ID: 33129457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatio-temporal variations in bloom of the red-tide dinoflagellate Karenia mikimotoi in Imari Bay, Japan, in 2014: Factors controlling horizontal and vertical distribution.
    Aoki K; Kameda T; Yamatogi T; Ishida N; Hirae S; Kawaguchi M; Syutou T
    Mar Pollut Bull; 2017 Nov; 124(1):130-138. PubMed ID: 28712772
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous automated imaging-in-flow cytometry for detection and early warning of Karenia brevis blooms in the Gulf of Mexico.
    Campbell L; Henrichs DW; Olson RJ; Sosik HM
    Environ Sci Pollut Res Int; 2013 Oct; 20(10):6896-902. PubMed ID: 23307076
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monitoring of Harmful Algal Bloom (HAB) of Noctiluca scintillans (Macartney) along the Gulf of Mannar, India using in-situ and satellite observations and its impact on wild and maricultured finfishes.
    Rameshkumar P ; Thirumalaiselvan PS; Raman M; Remya L; Jayakumar R; Sakthivel M; Tamilmani G; Sankar M; Anikuttan KK; Menon NN; Saravanan R; Ravikumar TT; Narasimapallavan I; Krishnaveni N; Muniasamy V; Batcha SM; Gopalakrishnan A
    Mar Pollut Bull; 2023 Mar; 188():114611. PubMed ID: 36731375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Harmful algal bloom species and phosphate-processing effluent: field and laboratory studies.
    Garrett M; Wolny J; Truby E; Heil C; Kovach C
    Mar Pollut Bull; 2011 Mar; 62(3):596-601. PubMed ID: 21145070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of red tide (Karenia brevis) on reflex impairment and mortality of sublegal Florida stone crabs, Menippe mercenaria.
    Gravinese PM; Kronstadt SM; Clemente T; Cole C; Blum P; Henry MS; Pierce RH; Lovko VJ
    Mar Environ Res; 2018 Jun; 137():145-148. PubMed ID: 29571587
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In situ spectral response of the Arabian Gulf and Sea of Oman coastal waters to bio-optical properties.
    Al Shehhi MR; Gherboudj I; Ghedira H
    J Photochem Photobiol B; 2017 Oct; 175():235-243. PubMed ID: 28915493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessing potential of the Geostationary Littoral Imaging and Monitoring Radiometer (GLIMR) for water quality monitoring across the coastal United States.
    Schaeffer BA; Whitman P; Vandermeulen R; Hu C; Mannino A; Salisbury J; Efremova B; Conmy R; Coffer M; Salls W; Ferriby H; Reynolds N
    Mar Pollut Bull; 2023 Nov; 196():115558. PubMed ID: 37757532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coyote (Canis latrans) and domestic dog (Canis familiaris) mortality and morbidity due to a Karenia brevis red tide in the Gulf of Mexico.
    Castle KT; Flewelling LJ; Bryan J; Kramer A; Lindsay J; Nevada C; Stablein W; Wong D; Landsberg JH
    J Wildl Dis; 2013 Oct; 49(4):955-64. PubMed ID: 24502723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of harmful algal blooms from satellite-based inherent optical properties of the ocean in Paracas Bay - Peru.
    Paulino C; Sánchez S; Alburqueque E; Lorenzo A; Grados D
    Mar Pollut Bull; 2024 Apr; 201():116173. PubMed ID: 38382324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fusing remote sensing data with spatiotemporal in situ samples for red tide (Karenia brevis) detection.
    Fick R; Medina M; Angelini C; Kaplan D; Gader P; He W; Jiang Z; Zheng G
    Integr Environ Assess Manag; 2024 Sep; 20(5):1432-1446. PubMed ID: 38426802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of prolonged exposure to hypoxia and Florida red tide (Karenia brevis) on the survival and activity of stone crabs.
    Gravinese PM; Munley MK; Kahmann G; Cole C; Lovko V; Blum P; Pierce R
    Harmful Algae; 2020 Sep; 98():101897. PubMed ID: 33129455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variable allelopathy among phytoplankton reflected in red tide metabolome.
    Poulin RX; Poulson-Ellestad KL; Roy JS; Kubanek J
    Harmful Algae; 2018 Jan; 71():50-56. PubMed ID: 29306396
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phytoplankton bloom detection during the COVID-19 lockdown with remote sensing data: Using Copernicus Sentinel-3 for north-western Arabian/Persian Gulf case study.
    Polikarpov I; Al-Yamani F; Petrov P; Saburova M; Mihalkov V; Al-Enezi A
    Mar Pollut Bull; 2021 Oct; 171():112734. PubMed ID: 34332354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a bio-optical model for the Barents Sea to quantitatively link glider and satellite observations.
    Kostakis I; Röttgers R; Orkney A; Bouman HA; Porter M; Cottier F; Berge J; McKee D
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190367. PubMed ID: 32862821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring.
    Skakun S; Justice CO; Vermote E; Roger JC
    Int J Remote Sens; 2018; 39(4):971-992. PubMed ID: 29892137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of satellite remote sensing in monitoring dissolved oxygen variabilities: A case study for coastal waters in Korea.
    Kim YH; Son S; Kim HC; Kim B; Park YG; Nam J; Ryu J
    Environ Int; 2020 Jan; 134():105301. PubMed ID: 31743805
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of phytoplankton abundances (Chlorophyll-a) in the optically complex inland water - The Baltic Sea.
    Zhang D; Lavender S; Muller JP; Walton D; Karlson B; Kronsell J
    Sci Total Environ; 2017 Dec; 601-602():1060-1074. PubMed ID: 28599362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of hyperspectral remote sensing reflectance for detection and assessment of the harmful alga, Karenia brevis.
    Craig SE; Lohrenz SE; Lee Z; Mahoney KL; Kirkpatrick GJ; Schofield OM; Steward RG
    Appl Opt; 2006 Jul; 45(21):5414-25. PubMed ID: 16826278
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of moderate concentrations of Karenia brevis on stone crab reproduction.
    Gravinese PM; Gregory KM; Bartzick JH; Ramos ER; Stewart SM; Lovko VJ
    Mar Environ Res; 2023 Nov; 192():106191. PubMed ID: 37776808
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.