These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28602288)

  • 1. Low-cost colorimetric assay of biothiols based on the photochemical reduction of silver halides and consumer electronic imaging devices.
    Kappi FA; Papadopoulos GA; Tsogas GZ; Giokas DL
    Talanta; 2017 Sep; 172():15-22. PubMed ID: 28602288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Paper-based devices for biothiols sensing using the photochemical reduction of silver halides.
    Kappi FA; Tsogas GZ; Routsi AM; Christodouleas DC; Giokas DL
    Anal Chim Acta; 2018 Dec; 1036():89-96. PubMed ID: 30253841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assay of biothiols by regulating the growth of silver nanoparticles with C-dots as reducing agent.
    Shen LM; Chen Q; Sun ZY; Chen XW; Wang JH
    Anal Chem; 2014 May; 86(10):5002-8. PubMed ID: 24773228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles.
    Mohammadi S; Khayatian G
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Oct; 185():27-34. PubMed ID: 28531847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols.
    Xu H; Wang Y; Huang X; Li Y; Zhang H; Zhong X
    Analyst; 2012 Feb; 137(4):924-31. PubMed ID: 22179771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biothiol modulated growth and aggregation of gold nanoparticles and their determination in biological fluids using digital photometry.
    Akrivi E; Kappi F; Gouma V; Vlessidis AG; Giokas DL; Kourkoumelis N
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Mar; 249():119337. PubMed ID: 33360206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free colorimetric detection of biological thiols based on target-triggered inhibition of photoinduced formation of AuNPs.
    Jung YL; Park JH; Kim MI; Park HG
    Nanotechnology; 2016 Feb; 27(5):055501. PubMed ID: 26671249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colorimetric sensing of bithiols using photocatalytic UiO-66(NH2) as H2O2-free peroxidase mimics.
    Hu Z; Jiang X; Xu F; Jia J; Long Z; Hou X
    Talanta; 2016 Sep; 158():276-282. PubMed ID: 27343606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A label-free fluorimetric detection of biothiols based on the oxidase-like activity of Ag
    Li R; Lei C; Zhao XE; Gao Y; Gao H; Zhu S; Wang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 188():20-25. PubMed ID: 28689074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bovine serum albumin-confined silver nanoclusters as fluorometric probe for detection of biothiols.
    Chen Z; Lu D; Cai Z; Dong C; Shuang S
    Luminescence; 2014 Nov; 29(7):722-7. PubMed ID: 24403131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligonucleotide-stabilized fluorescent silver nanoclusters for sensitive detection of biothiols in biological fluids.
    Han B; Wang E
    Biosens Bioelectron; 2011 Jan; 26(5):2585-9. PubMed ID: 21123043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoactivated CdTe/CdSe quantum dots as a near infrared fluorescent probe for detecting biothiols in biological fluids.
    Zhang Y; Li Y; Yan XP
    Anal Chem; 2009 Jun; 81(12):5001-7. PubMed ID: 19518148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon Nanodots-Based Fluorescent Turn-On Sensor Array for Biothiols.
    Wu Y; Liu X; Wu Q; Yi J; Zhang G
    Anal Chem; 2017 Jul; 89(13):7084-7089. PubMed ID: 28602089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective optical sensing of biothiols with Ellman's reagent: 5,5'-Dithio-bis(2-nitrobenzoic acid)-modified gold nanoparticles.
    Güçlü K; Ozyürek M; Güngör N; Baki S; Apak R
    Anal Chim Acta; 2013 Sep; 794():90-8. PubMed ID: 23972980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling exonuclease III with DNA metallization for amplified detection of biothiols at picomolar concentration.
    Chen Z; Zhou L; Zhao A; Zhang Z; Wang Z; Lin Y; Ren J; Qu X
    Biosens Bioelectron; 2014 Aug; 58():214-8. PubMed ID: 24650436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-stabilized bimetallic nanozyme and its application on colorimetric assay of biothiols.
    Sun Y; Wang J; Li W; Zhang J; Zhang Y; Fu Y
    Biosens Bioelectron; 2015 Dec; 74():1038-46. PubMed ID: 26275713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface enhanced Raman spectroscopic direct determination of low molecular weight biothiols in umbilical cord whole blood.
    Kuligowski J; El-Zahry MR; Sánchez-Illana Á; Quintás G; Vento M; Lendl B
    Analyst; 2016 Apr; 141(7):2165-74. PubMed ID: 26911321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of silver nanoparticles capped with different functional groups as the matrix and affinity probes in surface-assisted laser desorption/ionization time-of-flight and atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry for rapid analysis of sulfur drugs and biothiols in human urine.
    Shrivas K; Wu HF
    Rapid Commun Mass Spectrom; 2008 Sep; 22(18):2863-72. PubMed ID: 18720468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold alloy-based nanozyme sensor arrays for biothiol detection.
    Lin J; Wang Q; Wang X; Zhu Y; Zhou X; Wei H
    Analyst; 2020 Jun; 145(11):3916-3921. PubMed ID: 32301943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free gold nanorods sensor array for colorimetric detection and discrimination of biothiols in human urine samples.
    Yuan D; Liu JJ; Yan HH; Li CM; Huang CZ; Wang J
    Talanta; 2019 Oct; 203():220-226. PubMed ID: 31202329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.