These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28602330)

  • 1. Mean shape of the human limbus.
    Consejo A; Llorens-Quintana C; Radhakrishnan H; Iskander DR
    J Cataract Refract Surg; 2017 May; 43(5):667-672. PubMed ID: 28602330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of Corneoscleral Geometry Using Fourier Transform Profilometry in the Healthy Eye.
    Piñero DP; Martínez-Abad A; Soto-Negro R; Ariza-Gracia MA; Carracedo G
    Eye Contact Lens; 2019 May; 45(3):201-207. PubMed ID: 30325762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limbus misrepresentation in parametric eye models.
    Moore J; Shu X; Lopes BT; Wu R; Abass A
    PLoS One; 2020; 15(9):e0236096. PubMed ID: 32970690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional non-parametric method for limbus detection.
    Abass A; Lopes BT; Eliasy A; Wu R; Jones S; Clamp J; Ambrósio R; Elsheikh A
    PLoS One; 2018; 13(11):e0207710. PubMed ID: 30475843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of corneal power, astigmatism, and wavefront aberration measurements obtained by a point-source color light-emitting diode-based topographer, a Placido-disk topographer, and a combined Placido and dual Scheimpflug device.
    Ventura BV; Wang L; Ali SF; Koch DD; Weikert MP
    J Cataract Refract Surg; 2015 Aug; 41(8):1658-71. PubMed ID: 26432123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corneo-scleral limbus demarcation from 3D height data.
    Consejo A; Iskander DR
    Cont Lens Anterior Eye; 2016 Dec; 39(6):450-457. PubMed ID: 27212670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A review of mathematical descriptors of corneal asphericity].
    Gatinel D; Haouat M; Hoang-Xuan T
    J Fr Ophtalmol; 2002 Jan; 25(1):81-90. PubMed ID: 11965125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peripheral light-focusing: measurement reliability and correlations with ocular dimensions.
    Twelker JD; Harbison SC; Bailey IL
    Optom Vis Sci; 2005 Feb; 82(2):94-100. PubMed ID: 15711456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors affecting corneoscleral topography.
    Hall LA; Hunt C; Young G; Wolffsohn J
    Invest Ophthalmol Vis Sci; 2013 May; 54(5):3691-701. PubMed ID: 23548617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourier analysis of video-keratographic data. A tool for separation of spherical, regular astigmatic and irregular astigmatic corneal power components.
    Hjortdal JO; Erdmann L; Bek T
    Ophthalmic Physiol Opt; 1995 May; 15(3):171-85. PubMed ID: 7659417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraobserver repeatability and interobserver reproducibility of corneal measurements in normal eyes using an optical coherence tomography-Placido disk device.
    Shah JM; Han D; Htoon HM; Mehta JS
    J Cataract Refract Surg; 2015 Feb; 41(2):372-81. PubMed ID: 25661131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative clinical anatomy of the human cornea in vivo. A morphometric study by ultrasonic pachymetry and computer-assisted topographic videokeratoscopy.
    Longanesi L; Cavallini GM; Toni R
    Acta Anat (Basel); 1996; 157(1):73-9. PubMed ID: 9096744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The differences in corneal shape between myopic and normal eyes].
    Liu Z; Chen J; Li S
    Zhonghua Yan Ke Za Zhi; 1995 Jul; 31(4):282-4. PubMed ID: 8745524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Describing the corneal shape after wavefront-optimized photorefractive keratectomy.
    de Jong T; Wijdh RH; Koopmans SA; Jansonius NM
    Optom Vis Sci; 2014 Oct; 91(10):1231-7. PubMed ID: 25171668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. White-to-white corneal diameter differences in moderately and highly myopic eyes: partial coherence interferometry versus scanning-slit topography.
    Martin R; Ortiz S; Rio-Cristobal A
    J Cataract Refract Surg; 2013 Apr; 39(4):585-9. PubMed ID: 23415065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographic and biomechanical differences between hyperopic and myopic laser in situ keratomileusis.
    Qazi MA; Roberts CJ; Mahmoud AM; Pepose JS
    J Cataract Refract Surg; 2005 Jan; 31(1):48-60. PubMed ID: 15721696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Corneal Layers and Anterior Sclera in Emmetropic and Myopic Eyes.
    Pekel G; Yağcı R; Acer S; Ongun GT; Çetin EN; Simavlı H
    Cornea; 2015 Jul; 34(7):786-90. PubMed ID: 25811725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Underestimation of intraocular lens power for cataract surgery after myopic photorefractive keratectomy.
    Seitz B; Langenbucher A; Nguyen NX; Kus MM; Küchle M
    Ophthalmology; 1999 Apr; 106(4):693-702. PubMed ID: 10201589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Goodness-of-prediction of Zernike polynomial fitting to corneal surfaces.
    Smolek MK; Klyce SD
    J Cataract Refract Surg; 2005 Dec; 31(12):2350-5. PubMed ID: 16473230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Analysis of the influence factors of school-age children's refractive status].
    Chen ZG; Chen MC; Zhang JY; Cai DQ; Wang Q; Lin SS; Chen JW; Zhong HL
    Zhonghua Yan Ke Za Zhi; 2016 Nov; 52(11):831-835. PubMed ID: 27852399
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.