BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28602332)

  • 1. Assessment of stromal riboflavin concentration-depth profile in nanotechnology-based transepithelial corneal crosslinking.
    Lombardo G; Micali NL; Villari V; Leone N; Serrao S; Rusciano D; Lombardo M
    J Cataract Refract Surg; 2017 May; 43(5):680-686. PubMed ID: 28602332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-Optical Method to Assess Stromal Concentration of Riboflavin in Conventional and Accelerated UV-A Irradiation of the Human Cornea.
    Lombardo G; Micali NL; Villari V; Serrao S; Lombardo M
    Invest Ophthalmol Vis Sci; 2016 Feb; 57(2):476-83. PubMed ID: 26868750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultraviolet A: Visible spectral absorbance of the human cornea after transepithelial soaking with dextran-enriched and dextran-free riboflavin 0.1% ophthalmic solutions.
    Lombardo M; Micali N; Villari V; Serrao S; Pucci G; Barberi R; Lombardo G
    J Cataract Refract Surg; 2015 Oct; 41(10):2283-90. PubMed ID: 26703306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive real-time assessment of riboflavin consumption in standard and accelerated corneal crosslinking.
    Lombardo M; Lombardo G
    J Cataract Refract Surg; 2019 Jan; 45(1):80-86. PubMed ID: 30360937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corneal light backscattering after transepithelial corneal crosslinking using iontophoresis in donor human corneal tissue.
    Lombardo M; Serrao S; Carbone G; Lombardo G
    J Cataract Refract Surg; 2015 Mar; 41(3):635-43. PubMed ID: 25804584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical Strengthening of the Human Cornea Induced by Nanoplatform-Based Transepithelial Riboflavin/UV-A Corneal Cross-Linking.
    Labate C; Lombardo M; Lombardo G; De Santo MP
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):179-184. PubMed ID: 28114577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical changes in the human cornea after transepithelial corneal crosslinking using iontophoresis.
    Lombardo M; Serrao S; Rosati M; Ducoli P; Lombardo G
    J Cataract Refract Surg; 2014 Oct; 40(10):1706-15. PubMed ID: 25263041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting corneal cross-linking treatment efficacy with real-time assessment of corneal riboflavin concentration.
    Lombardo M; Bernava GM; Serrao S; Roszkowska AM; Lombardo G
    J Cataract Refract Surg; 2023 Jun; 49(6):635-641. PubMed ID: 36745847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Collagen fiber diameter in the rabbit cornea after collagen crosslinking by riboflavin/UVA.
    Wollensak G; Wilsch M; Spoerl E; Seiler T
    Cornea; 2004 Jul; 23(5):503-7. PubMed ID: 15220736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corneal crosslinking: riboflavin concentration in corneal stroma exposed with and without epithelium.
    Baiocchi S; Mazzotta C; Cerretani D; Caporossi T; Caporossi A
    J Cataract Refract Surg; 2009 May; 35(5):893-9. PubMed ID: 19393890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrastromal application of riboflavin for corneal crosslinking.
    Seiler TG; Fischinger I; Senfft T; Schmidinger G; Seiler T
    Invest Ophthalmol Vis Sci; 2014 Jun; 55(7):4261-5. PubMed ID: 24917136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of corneal stromal riboflavin concentration without epithelial removal.
    Rubinfeld RS; Stulting RD; Gum GG; Talamo JH
    J Cataract Refract Surg; 2018 Feb; 44(2):237-242. PubMed ID: 29526339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraoperative OCT Pachymetry in Patients Undergoing Dextran-Free Riboflavin UVA Accelerated Corneal Collagen Crosslinking.
    Rechichi M; Mazzotta C; Daya S; Mencucci R; Lanza M; Meduri A
    Curr Eye Res; 2016 Oct; 41(10):1310-1315. PubMed ID: 26882478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Corneal Riboflavin Gradients Using Dextran and HPMC Solutions.
    Ehmke T; Seiler TG; Fischinger I; Ripken T; Heisterkamp A; Frueh BE
    J Refract Surg; 2016 Dec; 32(12):798-802. PubMed ID: 27930789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corneal cross-linking: intrastromal riboflavin concentration in iontophoresis-assisted imbibition versus traditional and transepithelial techniques.
    Mastropasqua L; Nubile M; Calienno R; Mattei PA; Pedrotti E; Salgari N; Mastropasqua R; Lanzini M
    Am J Ophthalmol; 2014 Mar; 157(3):623-30.e1. PubMed ID: 24321474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conservative treatment of keratoconus by riboflavin-uva-induced cross-linking of corneal collagen: qualitative investigation.
    Mazzotta C; Traversi C; Baiocchi S; Sergio P; Caporossi T; Caporossi A
    Eur J Ophthalmol; 2006; 16(4):530-5. PubMed ID: 16952090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transepithelial Riboflavin Absorption in an Ex Vivo Rabbit Corneal Model.
    Gore DM; O'Brart D; French P; Dunsby C; Allan BD
    Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):5006-11. PubMed ID: 26230765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen Diffusion May Limit the Biomechanical Effectiveness of Iontophoresis-Assisted Transepithelial Corneal Cross-linking.
    Torres-Netto EA; Kling S; Hafezi N; Vinciguerra P; Randleman JB; Hafezi F
    J Refract Surg; 2018 Nov; 34(11):768-774. PubMed ID: 30428097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riboflavin osmolar modification for transepithelial corneal cross-linking.
    Raiskup F; Pinelli R; Spoerl E
    Curr Eye Res; 2012 Mar; 37(3):234-8. PubMed ID: 22335811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Algorithm to Predict the Biomechanical Stiffening Effect in Corneal Cross-linking.
    Kling S; Hafezi F
    J Refract Surg; 2017 Feb; 33(2):128-136. PubMed ID: 28192592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.