BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28602426)

  • 1. Estimation on separation efficiency of aluminum from base-cap of spent fluorescent lamp in hammer crusher unit.
    Rhee SW
    Waste Manag; 2017 Sep; 67():259-264. PubMed ID: 28602426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of mercury emission from linear type of spent fluorescent lamp.
    Rhee SW; Choi HH; Park HS
    Waste Manag; 2014 Jun; 34(6):1066-71. PubMed ID: 24053901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental friendly crush-magnetic separation technology for recycling metal-plated plastics from end-of-life vehicles.
    Xue M; Li J; Xu Z
    Environ Sci Technol; 2012 Mar; 46(5):2661-7. PubMed ID: 22304328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct recovery of copper and aluminum from waste electric wires using a roll-type electrostatic separator.
    Salama A; Richard G; Medles K; Zeghloul T; Dascalescu L
    Waste Manag; 2018 Jun; 76():207-216. PubMed ID: 29605307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Investigation of a New Modular Crusher Machine Developed for Olive Oil Extraction Plants.
    Tamborrino A; Perone C; Veneziani G; Berardi A; Romaniello R; Servili M; Leone A
    Foods; 2022 Sep; 11(19):. PubMed ID: 36230110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic separation of aluminium from residue of electric cables recycling process.
    Bedeković G; Trbović R
    Waste Manag; 2020 May; 108():21-27. PubMed ID: 32335485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Key factors of eddy current separation for recovering aluminum from crushed e-waste.
    Ruan J; Dong L; Zheng J; Zhang T; Huang M; Xu Z
    Waste Manag; 2017 Feb; 60():84-90. PubMed ID: 27553908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.
    Xue M; Yan G; Li J; Xu Z
    Environ Sci Technol; 2012 Oct; 46(19):10556-63. PubMed ID: 22924535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of copper and aluminium from coaxial cable wastes using comparative mechanical processes analysis.
    Martins TR; Mrozinski NS; Bertuol DA; Tanabe EH
    Environ Technol; 2021 Aug; 42(20):3205-3217. PubMed ID: 32005087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.
    Rabah MA
    Waste Manag; 2004; 24(2):119-26. PubMed ID: 14761750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on the recycling of scrap integrated circuits by leaching.
    Lee CH; Tang LW; Popuri SR
    Waste Manag Res; 2011 Jul; 29(7):677-85. PubMed ID: 20837559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on the Wear Behavior of the Fixed Cone Liner of a Cone Crusher Based on the Discrete Element Method.
    Li D; Wang Y; Wang C; Li S
    ACS Omega; 2020 May; 5(19):11186-11195. PubMed ID: 32455242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of industrial hammer mill rotor speed on extraction efficiency and quality of extra virgin olive oil.
    Polari JJ; Garcí-Aguirre D; Olmo-García L; Carrasco-Pancorbo A; Wang SC
    Food Chem; 2018 Mar; 242():362-368. PubMed ID: 29037701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of wet shaking table process using response surface methodology applied to the separation of copper and aluminum from the fine fraction of shredder ELVs.
    Jordão H; Sousa AJ; Carvalho MT
    Waste Manag; 2016 Feb; 48():366-373. PubMed ID: 26470828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on the high-efficiency crushing, sorting and recycling process of column-shaped waste lithium batteries.
    Yan B; Ma E; Wang J
    Sci Total Environ; 2023 Mar; 864():161081. PubMed ID: 36565872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches to improve separation efficiency of eddy current separation for recovering aluminum from waste toner cartridges.
    Ruan J; Xu Z
    Environ Sci Technol; 2012 Jun; 46(11):6214-21. PubMed ID: 22571825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and recovery of mercury from spent fluorescent lamps.
    Jang M; Hong SM; Park JK
    Waste Manag; 2005; 25(1):5-14. PubMed ID: 15681174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the work environment in the fluorescent lamp recycling sector by optimizing mercury elimination.
    Lecler MT; Zimmermann F; Silvente E; Masson A; Morèle Y; Remy A; Chollot A
    Waste Manag; 2018 Jun; 76():250-260. PubMed ID: 29496382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of mercury amount in the components of spent U-type lamp.
    Rhee SW
    Environ Technol; 2017 May; 38(10):1305-1312. PubMed ID: 27608735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing and developing a continuous separation system for the wet process separation of aluminum and polyethylene in aseptic composite packaging waste.
    Yan D; Peng Z; Liu Y; Li L; Huang Q; Xie M; Wang Q
    Waste Manag; 2015 Jan; 35():21-8. PubMed ID: 25458854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.