These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28602665)

  • 21. Red macroalgae as a sustainable resource for bio-based products.
    Yun EJ; Choi IG; Kim KH
    Trends Biotechnol; 2015 May; 33(5):247-9. PubMed ID: 25818231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Platform construction of molecular breeding for utilization of brown macroalgae.
    Takagi T; Kuroda K; Ueda M
    J Biosci Bioeng; 2018 Jan; 125(1):1-7. PubMed ID: 28877851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biohydrogen production from microalgal biomass: energy requirement, CO2 emissions and scale-up scenarios.
    Ferreira AF; Ortigueira J; Alves L; Gouveia L; Moura P; Silva C
    Bioresour Technol; 2013 Sep; 144():156-64. PubMed ID: 23867534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A review on bioconversion of lignocellulosic biomass to H2: Key challenges and new insights.
    Ren NQ; Zhao L; Chen C; Guo WQ; Cao GL
    Bioresour Technol; 2016 Sep; 215():92-99. PubMed ID: 27090403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sustainable production of biohydrogen from algae biomass: Critical review on pretreatment methods, mechanism and challenges.
    Karishma S; Saravanan A; Senthil Kumar P; Rangasamy G
    Bioresour Technol; 2022 Dec; 366():128187. PubMed ID: 36309177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pretreatments of lignocellulosic and algal biomasses for sustainable biohydrogen production: Recent progress, carbon neutrality, and circular economy.
    Yang E; Chon K; Kim KY; Le GTH; Nguyen HY; Le TTQ; Nguyen HTT; Jae MR; Ahmad I; Oh SE; Chae KJ
    Bioresour Technol; 2023 Feb; 369():128380. PubMed ID: 36427768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Macroalgae (Ulva reticulata) derived biohydrogen recovery through mild surfactant induced energy and cost efficient dispersion pretreatment technology.
    Pugazhendi A; Jamal MT; Al-Mur BA; Jeyakumar RB; Kumar G
    Chemosphere; 2022 Feb; 288(Pt 1):132463. PubMed ID: 34619256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potentials of macroalgae as feedstocks for biorefinery.
    Jung KA; Lim SR; Kim Y; Park JM
    Bioresour Technol; 2013 May; 135():182-90. PubMed ID: 23186669
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Algal biomass to biohydrogen: Pretreatment, influencing factors, and conversion strategies.
    Bhatia SK; Rajesh Banu J; Singh V; Kumar G; Yang YH
    Bioresour Technol; 2023 Jan; 368():128332. PubMed ID: 36414137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The analysis of macroalgae biomass found around Hawaii for bioethanol production.
    Yoza BA; Masutani EM
    Environ Technol; 2013; 34(13-16):1859-67. PubMed ID: 24350439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol--comparison of five pretreatment technologies.
    Schultz-Jensen N; Thygesen A; Leipold F; Thomsen ST; Roslander C; Lilholt H; Bjerre AB
    Bioresour Technol; 2013 Jul; 140():36-42. PubMed ID: 23672937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization study on the hydrogen peroxide pretreatment and production of bioethanol from seaweed Ulva prolifera biomass.
    Li Y; Cui J; Zhang G; Liu Z; Guan H; Hwang H; Aker WG; Wang P
    Bioresour Technol; 2016 Aug; 214():144-149. PubMed ID: 27132221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic enzymatic saccharification and fermentation of agar for biohydrogen production.
    Wu YR; Zhang M; Zhong M; Hu Z
    Bioresour Technol; 2017 Oct; 241():369-373. PubMed ID: 28578277
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Algal biomass conversion to bioethanol - a step-by-step assessment.
    Harun R; Yip JW; Thiruvenkadam S; Ghani WA; Cherrington T; Danquah MK
    Biotechnol J; 2014 Jan; 9(1):73-86. PubMed ID: 24227697
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent trends on seaweed fractionation for liquid biofuels production.
    Del Río PG; Gomes-Dias JS; Rocha CMR; Romaní A; Garrote G; Domingues L
    Bioresour Technol; 2020 Mar; 299():122613. PubMed ID: 31870706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in Bioutilization of Marine Macroalgae Carbohydrates: Degradation, Metabolism, and Fermentation.
    Zheng Y; Li Y; Yang Y; Zhang Y; Wang D; Wang P; Wong ACY; Hsieh YSY; Wang D
    J Agric Food Chem; 2022 Feb; 70(5):1438-1453. PubMed ID: 35089725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological fermentation pilot-scale systems and evaluation for commercial viability towards sustainable biohydrogen production.
    Zhang Q; Jiao Y; He C; Ruan R; Hu J; Ren J; Toniolo S; Jiang D; Lu C; Li Y; Man Y; Zhang H; Zhang Z; Xia C; Wang Y; Jing Y; Zhang X; Lin R; Li G; Yue J; Tahir N
    Nat Commun; 2024 May; 15(1):4539. PubMed ID: 38806457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A holistic zero waste biorefinery approach for macroalgal biomass utilization: A review.
    Rajak RC; Jacob S; Kim BS
    Sci Total Environ; 2020 May; 716():137067. PubMed ID: 32059301
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biohydrogen production and bioprocess enhancement: a review.
    Mudhoo A; Forster-Carneiro T; Sánchez A
    Crit Rev Biotechnol; 2011 Sep; 31(3):250-63. PubMed ID: 21073399
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biohydrogen production using algae: Potentiality, economics and challenges.
    Pathy A; Nageshwari K; Ramaraj R; Pragas Maniam G; Govindan N; Balasubramanian P
    Bioresour Technol; 2022 Sep; 360():127514. PubMed ID: 35760248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.