These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Accumulation and excretion of cadmium in three successive generations of Spodoptera exigua (Lepidoptera: Noctuidae) and impact on the population increase. Su HH; Hu MM; Harvey-Samuel T; Yang YZ J Econ Entomol; 2014 Feb; 107(1):223-9. PubMed ID: 24665705 [TBL] [Abstract][Full Text] [Related]
43. Avermectin stress varied structure and function of gut microbial community in Lymantria dispar asiatica (Lepidoptera: Lymantriidae) larvae. Zeng JY; Vuong TM; Shi JH; Shi ZB; Guo JX; Zhang GC; Bi B Pestic Biochem Physiol; 2020 Mar; 164():196-202. PubMed ID: 32284127 [TBL] [Abstract][Full Text] [Related]
44. The localisation of HSP70 and oxidative stress indices in heads of Spodoptera exigua larvae in a cadmium-exposed population. Kafel A; Nowak A; Bembenek J; Szczygieł J; Nakonieczny M; Swiergosz-Kowalewska R Ecotoxicol Environ Saf; 2012 Apr; 78():22-7. PubMed ID: 22133653 [TBL] [Abstract][Full Text] [Related]
45. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria. Götze S; Matoo OB; Beniash E; Saborowski R; Sokolova IM Aquat Toxicol; 2014 Apr; 149():65-82. PubMed ID: 24572072 [TBL] [Abstract][Full Text] [Related]
46. Protective role of zinc in Spodoptera exigua larvae under 135-generational cadmium exposure. Tarnawska M; Babczyńska A; Hassa K; Kafel A; Płachetka-Bożek A; Augustyniak J; Dziewięcka M; Flasz B; Augustyniak M Chemosphere; 2019 Nov; 235():785-793. PubMed ID: 31280047 [TBL] [Abstract][Full Text] [Related]
47. The immunotoxicity of Cd exposure to gypsy moth larvae: An integrated analysis of cellular immunity and humoral immunity. Wu H; Tan M; Li Y; Zheng L; Xu J; Jiang D Ecotoxicol Environ Saf; 2022 Apr; 235():113434. PubMed ID: 35338967 [TBL] [Abstract][Full Text] [Related]
48. Cadmium accumulation in herbivorous and carnivorous small mammals: meta-analysis of field data and validation of the bioaccumulation model Optimal Modeling for Ecotoxicological Applications. Veltman K; Huijbregts MA; Hamers T; Wijnhoven S; Hendriks AJ Environ Toxicol Chem; 2007 Jul; 26(7):1488-96. PubMed ID: 17665691 [TBL] [Abstract][Full Text] [Related]
49. Cu/ZnSOD always responded stronger and rapider than MnSOD in Lymantria dispar larvae under the avermectin stress. Zeng J; Bi B; Zhang F; Cheng G; Vuong Thi MD; Zhang G Pestic Biochem Physiol; 2019 May; 156():72-79. PubMed ID: 31027583 [TBL] [Abstract][Full Text] [Related]
50. Plastic responses of larval mass and alkaline phosphatase to cadmium in the gypsy moth larvae. Vlahović M; Lazarević J; Perić-Mataruga V; Ilijin L; Mrdaković M Ecotoxicol Environ Saf; 2009 May; 72(4):1148-55. PubMed ID: 18472163 [TBL] [Abstract][Full Text] [Related]
51. The susceptibility of Lymantria dispar larvae to Beauveria bassiana under Cd stress: A multi-omics study. Jiang D; Wu S; Tan M; Jiang H; Yan S Environ Pollut; 2021 May; 276():116740. PubMed ID: 33611203 [TBL] [Abstract][Full Text] [Related]
52. The effects of temperature stress and population origin on the thermal sensitivity of Lymantria dispar L. (Lepidoptera: Erebidae) larvae. Ilijin L; Grčić A; Mrdaković M; Vlahović M; Todorović D; Filipović A; Matić D; Perić Mataruga V Sci Rep; 2022 Dec; 12(1):21858. PubMed ID: 36528655 [TBL] [Abstract][Full Text] [Related]
53. Variation in the pH of experimental diets affects the performance of Lymantria dispar asiatica larvae and its gut microbiota. Zeng JY; Shi JH; Guo JX; Shi ZB; Zhang GC; Zhang J Arch Insect Biochem Physiol; 2020 Apr; 103(4):e21654. PubMed ID: 31916310 [TBL] [Abstract][Full Text] [Related]
54. Bioaccumulation of Cd by a European lacertid lizard after chronic exposure to Cd-contaminated food. Mann RM; Sánchez-Hernández JC; Serra EA; Soares AM Chemosphere; 2007 Jul; 68(8):1525-34. PubMed ID: 17462702 [TBL] [Abstract][Full Text] [Related]
55. Experimental exposure to cadmium affects metallothionein-like protein levels but not survival and growth in wolf spiders from polluted and reference populations. Eraly D; Hendrickx F; Bervoets L; Lens L Environ Pollut; 2010 Jun; 158(6):2124-31. PubMed ID: 20363062 [TBL] [Abstract][Full Text] [Related]
56. Cadmium ecophysiology in seven stonefly (Plecoptera) species: delineating sources and estimating susceptibility. Martin CA; Luoma SN; Cain DJ; Buchwalter DB Environ Sci Technol; 2007 Oct; 41(20):7171-7. PubMed ID: 17993165 [TBL] [Abstract][Full Text] [Related]
57. The effects of cadmium in feed, and its amelioration with zinc, on element balances in sheep. Phillips CJ; Chiy PC; Omed HM J Anim Sci; 2004 Aug; 82(8):2489-502. PubMed ID: 15318751 [TBL] [Abstract][Full Text] [Related]
58. [Effect of calcium content in diet on the accumulation and toxicity of cadmium in organisms]. Cui Y; Zhu Y; Zhao Z Wei Sheng Yan Jiu; 2004 May; 33(3):361-4. PubMed ID: 15211816 [TBL] [Abstract][Full Text] [Related]
59. Inhibition of juvenile hormone esterase activity in Lymantria dispar (Lepidoptera, Lymantriidae) larvae parasitized by Glyptapanteles liparidis (Hymenoptera, Braconidae). Schafellner C; Marktl RC; Schopf A J Insect Physiol; 2007 Aug; 53(8):858-68. PubMed ID: 17631309 [TBL] [Abstract][Full Text] [Related]
60. Survival of larvae of Nippostrongylus brasiliensis (nematoda) in solutions of toxic substances. Gadomska K; Zakrzewska K Wiad Parazytol; 1997; 43(1):79-88. PubMed ID: 9259610 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]