These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28602991)

  • 21. Hydrogels based on oxidized starches from different botanical sources for release of fertilizers.
    León O; Soto D; Antúnez A; Fernández R; González J; Piña C; Muñoz-Bonilla A; Fernandez-García M
    Int J Biol Macromol; 2019 Sep; 136():813-822. PubMed ID: 31228502
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Injectable biopolymer based hydrogels for drug delivery applications.
    Atta S; Khaliq S; Islam A; Javeria I; Jamil T; Athar MM; Shafiq MI; Ghaffar A
    Int J Biol Macromol; 2015 Sep; 80():240-5. PubMed ID: 26118484
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a novel pH sensitive silane crosslinked injectable hydrogel for controlled release of neomycin sulfate.
    Jabeen S; Islam A; Ghaffar A; Gull N; Hameed A; Bashir A; Jamil T; Hussain T
    Int J Biol Macromol; 2017 Apr; 97():218-227. PubMed ID: 28064050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition.
    Nam K; Watanabe J; Ishihara K
    Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Starch functionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine.
    Ganguly S; Maity T; Mondal S; Das P; Das NC
    Int J Biol Macromol; 2017 Feb; 95():185-198. PubMed ID: 27865957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimuli-responsive hydrogels in drug delivery and tissue engineering.
    Sood N; Bhardwaj A; Mehta S; Mehta A
    Drug Deliv; 2016; 23(3):758-80. PubMed ID: 25045782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Poly(ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs.
    Diramio JA; Kisaalita WS; Majetich GF; Shimkus JM
    Biotechnol Prog; 2005; 21(4):1281-8. PubMed ID: 16080712
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pH- and Temperature-Responsive P(DMAEMA-GMA)-Alginate Semi-IPN Hydrogels Formed by Radical and Ring-Opening Polymerization for Aminophylline Release.
    Gao C; Liu M; Chen J; Chen C
    J Biomater Sci Polym Ed; 2012; 23(8):1039-54. PubMed ID: 21513583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-responsive supramolecular hydrogels from water-soluble PEG-grafted copolymers and cyclodextrin.
    Ren L; He L; Sun T; Dong X; Chen Y; Huang J; Wang C
    Macromol Biosci; 2009 Sep; 9(9):902-10. PubMed ID: 19544291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lignin-based hydrogels: A review of preparation, properties, and application.
    Meng Y; Lu J; Cheng Y; Li Q; Wang H
    Int J Biol Macromol; 2019 Aug; 135():1006-1019. PubMed ID: 31154040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stimuli-responsive hydrogels based on polysaccharides incorporated with thermo-responsive polymers as novel biomaterials.
    Prabaharan M; Mano JF
    Macromol Biosci; 2006 Dec; 6(12):991-1008. PubMed ID: 17128423
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of poly(2-oxazoline)-based hydrogels with tailor-made swelling degrees capable of stimuli-triggered compound release.
    Kelly AM; Hecke A; Wirnsberger B; Wiesbrock F
    Macromol Rapid Commun; 2011 Nov; 32(22):1815-9. PubMed ID: 21932286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and characterization of hydrogels based on natural polysaccharides: policaju and chitosan.
    Soares PA; Bourbon AI; Vicente AA; Andrade CA; Barros W; Correia MT; Pessoa A; Carneiro-da-Cunha MG
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():219-26. PubMed ID: 25063113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermoresponsive polysaccharides and their thermoreversible physical hydrogel networks.
    Graham S; Marina PF; Blencowe A
    Carbohydr Polym; 2019 Mar; 207():143-159. PubMed ID: 30599994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and theophylline delivery applications of novel PMAA/MWCNT-COOH nanohybrid hydrogels.
    Zhang CH; Luo YL; Chen YS; Wei QB; Fan LH
    J Biomater Sci Polym Ed; 2009; 20(7-8):1119-35. PubMed ID: 19454173
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lysine-derived, pH-sensitive and biodegradable poly(beta-aminoester urethane) networks and their local drug delivery behaviour.
    Tamer Y; Chen B
    Soft Matter; 2018 Feb; 14(7):1195-1209. PubMed ID: 29349467
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in green hydrogels from lignin: a review.
    Thakur VK; Thakur MK
    Int J Biol Macromol; 2015 Jan; 72():834-47. PubMed ID: 25304747
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Concentration influence of some polymers on dermatological hydrogels pH].
    Musiał W; Kubis A
    Polim Med; 2005; 35(3):21-30. PubMed ID: 16440894
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radiation synthesis and drug delivery properties of interpenetrating networks (IPNs) based on poly(vinyl alcohol)/ methylcellulose blend hydrogels.
    El-Naggar AWM; Senna MM; Mostafa TA; Helal RH
    Int J Biol Macromol; 2017 Sep; 102():1045-1051. PubMed ID: 28450244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The control of cargo release from physically crosslinked hydrogels by crosslink dynamics.
    Appel EA; Forster RA; Rowland MJ; Scherman OA
    Biomaterials; 2014 Dec; 35(37):9897-9903. PubMed ID: 25239043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.