These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28603035)

  • 1. Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae.
    McKeown M; Schubert M; Preston JC; Fjellheim S
    Mol Phylogenet Evol; 2017 Sep; 114():111-121. PubMed ID: 28603035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of FLOWERING LOCUS T by a microRNA in Brachypodium distachyon.
    Wu L; Liu D; Wu J; Zhang R; Qin Z; Liu D; Li A; Fu D; Zhai W; Mao L
    Plant Cell; 2013 Nov; 25(11):4363-77. PubMed ID: 24285787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Major niche transitions in Pooideae correlate with variation in photoperiodic flowering and evolution of CCT domain genes.
    Fjellheim S; Young DA; Paliocha M; Johnsen SS; Schubert M; Preston JC
    J Exp Bot; 2022 Jun; 73(12):4079-4093. PubMed ID: 35394528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of VRN2/Ghd7-Like Genes in Vernalization-Mediated Repression of Grass Flowering.
    Woods DP; McKeown MA; Dong Y; Preston JC; Amasino RM
    Plant Physiol; 2016 Apr; 170(4):2124-35. PubMed ID: 26848096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon.
    Ream TS; Woods DP; Schwartz CJ; Sanabria CP; Mahoy JA; Walters EM; Kaeppler HF; Amasino RM
    Plant Physiol; 2014 Feb; 164(2):694-709. PubMed ID: 24357601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Did gene family expansions during the Eocene-Oligocene boundary climate cooling play a role in Pooideae adaptation to cool climates?
    Sandve SR; Fjellheim S
    Mol Ecol; 2010 May; 19(10):2075-88. PubMed ID: 20406386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PHYTOCHROME C is an essential light receptor for photoperiodic flowering in the temperate grass, Brachypodium distachyon.
    Woods DP; Ream TS; Minevich G; Hobert O; Amasino RM
    Genetics; 2014 Sep; 198(1):397-408. PubMed ID: 25023399
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Liu B; Woods DP; Li W; Amasino RM
    Proc Natl Acad Sci U S A; 2023 Nov; 120(46):e2312052120. PubMed ID: 37934817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for an Early Origin of Vernalization Responsiveness in Temperate Pooideae Grasses.
    McKeown M; Schubert M; Marcussen T; Fjellheim S; Preston JC
    Plant Physiol; 2016 Sep; 172(1):416-26. PubMed ID: 27474116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor.
    Vigeland MD; Spannagl M; Asp T; Paina C; Rudi H; Rognli OA; Fjellheim S; Sandve SR
    New Phytol; 2013 Sep; 199(4):1060-1068. PubMed ID: 23701123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analyses reveal potential uses of Brachypodium distachyon as a model for cold stress responses in temperate grasses.
    Li C; Rudi H; Stockinger EJ; Cheng H; Cao M; Fox SE; Mockler TC; Westereng B; Fjellheim S; Rognli OA; Sandve SR
    BMC Plant Biol; 2012 May; 12():65. PubMed ID: 22569006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses.
    Higgins JA; Bailey PC; Laurie DA
    PLoS One; 2010 Apr; 5(4):e10065. PubMed ID: 20419097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of FLOWERING LOCUS T1 (FT1) gene in Brachypodium and wheat.
    Lv B; Nitcher R; Han X; Wang S; Ni F; Li K; Pearce S; Wu J; Dubcovsky J; Fu D
    PLoS One; 2014; 9(4):e94171. PubMed ID: 24718312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergent roles of FT-like 9 in flowering transition under different day lengths in Brachypodium distachyon.
    Qin Z; Bai Y; Muhammad S; Wu X; Deng P; Wu J; An H; Wu L
    Nat Commun; 2019 Feb; 10(1):812. PubMed ID: 30778068
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Bouché F; Woods DP; Linden J; Li W; Mayer KS; Amasino RM; Périlleux C
    Front Plant Sci; 2021; 12():769194. PubMed ID: 35069625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylotranscriptomics Resolves the Phylogeny of Pooideae and Uncovers Factors for Their Adaptive Evolution.
    Zhang L; Zhu X; Zhao Y; Guo J; Zhang T; Huang W; Huang J; Hu Y; Huang CH; Ma H
    Mol Biol Evol; 2022 Feb; 39(2):. PubMed ID: 35134207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of Cold Acclimation and Its Role in Niche Transition in the Temperate Grass Subfamily Pooideae.
    Schubert M; Grønvold L; Sandve SR; Hvidsten TR; Fjellheim S
    Plant Physiol; 2019 May; 180(1):404-419. PubMed ID: 30850470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The molecular basis of vernalization in different plant groups.
    Ream TS; Woods DP; Amasino RM
    Cold Spring Harb Symp Quant Biol; 2012; 77():105-15. PubMed ID: 23619014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Successive evolutionary steps drove Pooideae grasses from tropical to temperate regions.
    Zhong J; Robbett M; Poire A; Preston JC
    New Phytol; 2018 Jan; 217(2):925-938. PubMed ID: 29091285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Evolution of Photoperiod-Insensitive Flowering in Sorghum, A Genomic Model for Panicoid Grasses.
    Cuevas HE; Zhou C; Tang H; Khadke PP; Das S; Lin YR; Ge Z; Clemente T; Upadhyaya HD; Hash CT; Paterson AH
    Mol Biol Evol; 2016 Sep; 33(9):2417-28. PubMed ID: 27335143
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.