These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 28603040)

  • 1. A real-time control system of gene expression using ligand-bound nucleic acid aptamer for metabolic engineering.
    Wang J; Cui X; Yang L; Zhang Z; Lv L; Wang H; Zhao Z; Guan N; Dong L; Chen R
    Metab Eng; 2017 Jul; 42():85-97. PubMed ID: 28603040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A DNA Bubble-Mediated Gene Regulation System Based on Thrombin-Bound DNA Aptamers.
    Wang J; Yang L; Cui X; Zhang Z; Dong L; Guan N
    ACS Synth Biol; 2017 May; 6(5):758-765. PubMed ID: 28147483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Creating an in vivo bifunctional gene expression circuit through an aptamer-based regulatory mechanism for dynamic metabolic engineering in Bacillus subtilis.
    Deng J; Chen C; Gu Y; Lv X; Liu Y; Li J; Ledesma-Amaro R; Du G; Liu L
    Metab Eng; 2019 Sep; 55():179-190. PubMed ID: 31336181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and Engineering of a Clostridium Glycine Riboswitch and Its Use To Control a Novel Metabolic Pathway for 5-Aminolevulinic Acid Production in
    Zhou L; Ren J; Li Z; Nie J; Wang C; Zeng AP
    ACS Synth Biol; 2019 Oct; 8(10):2327-2335. PubMed ID: 31550137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel RNA aptamer-modified riboswitch as chemical sensor.
    Wang J; Yang D; Guo X; Song Q; Tan L; Dong L
    Anal Chim Acta; 2020 Mar; 1100():240-249. PubMed ID: 31987147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine-tuning of ecaA and pepc gene expression increases succinic acid production in Escherichia coli.
    Wang J; Qin D; Zhang B; Li Q; Li S; Zhou X; Dong L; Wang D
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8575-86. PubMed ID: 26092756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic logic circuits using RNA aptamer against T7 RNA polymerase.
    Kim J; Quijano JF; Kim J; Yeung E; Murray RM
    Biotechnol J; 2022 Mar; 17(3):e2000449. PubMed ID: 33813787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering and In Vivo Applications of Riboswitches.
    Hallberg ZF; Su Y; Kitto RZ; Hammond MC
    Annu Rev Biochem; 2017 Jun; 86():515-539. PubMed ID: 28375743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free selection of RNA aptamers for metabolic engineering.
    Hwang C; Carothers JM
    Methods; 2016 Aug; 106():37-41. PubMed ID: 27339940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a direct and inducible protein-RNA interaction to regulate RNA biology.
    Belmont BJ; Niles JC
    ACS Chem Biol; 2010 Sep; 5(9):851-61. PubMed ID: 20545348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recognition of cyclic-di-GMP by a riboswitch conducts translational repression through masking the ribosome-binding site distant from the aptamer domain.
    Inuzuka S; Kakizawa H; Nishimura KI; Naito T; Miyazaki K; Furuta H; Matsumura S; Ikawa Y
    Genes Cells; 2018 Jun; 23(6):435-447. PubMed ID: 29693296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-strand promoter traps for bacterial RNA polymerase.
    Pupov D; Esyunina D; Feklistov A; Kulbachinskiy A
    Biochem J; 2013 Jun; 452(2):241-8. PubMed ID: 23517087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Control of Aptamer-Ligand Activity Using Strand Displacement Reactions.
    Lloyd J; Tran CH; Wadhwani K; Cuba Samaniego C; Subramanian HKK; Franco E
    ACS Synth Biol; 2018 Jan; 7(1):30-37. PubMed ID: 29028334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The spinach RNA aptamer as a characterization tool for synthetic biology.
    Pothoulakis G; Ceroni F; Reeve B; Ellis T
    ACS Synth Biol; 2014 Mar; 3(3):182-7. PubMed ID: 23991760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aptamers to the sigma factor mimic promoter recognition and inhibit transcription initiation by bacterial RNA polymerase.
    Miropolskaya N; Kulbachinskiy A
    Biochem Biophys Res Commun; 2016 Jan; 469(2):294-9. PubMed ID: 26631966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Caprolactam-Specific Riboswitch as an Intracellular Metabolite Sensor.
    Jang S; Jang S; Im DK; Kang TJ; Oh MK; Jung GY
    ACS Synth Biol; 2019 Jun; 8(6):1276-1283. PubMed ID: 31074964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thrombin-mediated transcriptional regulation using DNA aptamers in DNA-based cell-free protein synthesis.
    Iyer S; Doktycz MJ
    ACS Synth Biol; 2014 Jun; 3(6):340-6. PubMed ID: 24059754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One step DNA assembly for combinatorial metabolic engineering.
    Coussement P; Maertens J; Beauprez J; Van Bellegem W; De Mey M
    Metab Eng; 2014 May; 23():70-7. PubMed ID: 24594279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered stoichiometry of an evolved RNA aptamer.
    Ohuchi S; Suess B
    RNA; 2018 Apr; 24(4):480-485. PubMed ID: 29284756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General approach for engineering small-molecule-binding DNA split aptamers.
    Kent AD; Spiropulos NG; Heemstra JM
    Anal Chem; 2013 Oct; 85(20):9916-23. PubMed ID: 24033257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.