These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28603298)

  • 1. A stable numerical method for the dynamics of fluidic membranes.
    Barrett JW; Garcke H; Nürnberg R
    Numer Math (Heidelb); 2016; 134(4):783-822. PubMed ID: 28603298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical computations of the dynamics of fluidic membranes and vesicles.
    Barrett JW; Garcke H; Nürnberg R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052704. PubMed ID: 26651720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations.
    Thamareerat N; Luadsong A; Aschariyaphotha N
    Springerplus; 2016; 5():417. PubMed ID: 27099822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffuse interface models of locally inextensible vesicles in a viscous fluid.
    Aland S; Egerer S; Lowengrub J; Voigt A
    J Comput Phys; 2014 Nov; 277():32-47. PubMed ID: 25246712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of convection characteristics for a system with deformable interface based on the Navier-Stokes and Oberbeck-Boussinesq equations.
    Bekezhanova VB; Goncharova ON
    Philos Trans A Math Phys Eng Sci; 2023 Apr; 381(2245):20220078. PubMed ID: 36842991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the flow field in the magnetic rod interfacial stress rheometer.
    Verwijlen T; Moldenaers P; Stone HA; Vermant J
    Langmuir; 2011 Aug; 27(15):9345-58. PubMed ID: 21696160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.
    Bhattacharya A; Kesarkar T
    Phys Rev E; 2016 Oct; 94(4-1):043309. PubMed ID: 27841548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data assimilation for the heat equation using stabilized finite element methods.
    Burman E; Oksanen L
    Numer Math (Heidelb); 2018; 139(3):505-528. PubMed ID: 29973740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining existing numerical models with data assimilation using weighted least-squares finite element methods.
    Rajaraman PK; Manteuffel TA; Belohlavek M; Heys JJ
    Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26991079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform Finite Element Error Estimates with Power-Type Asymptotic Constants for Unsteady Navier-Stokes Equations.
    Xie C; Wang K
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant-Influenced Gas-Liquid Interfaces: Nonlinear Equation of State and Finite Surface Viscosities.
    Lopez JM; Hirsa AH
    J Colloid Interface Sci; 2000 Sep; 229(2):575-583. PubMed ID: 10985838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of endocytosis: Viscous flow driven by membranes with non-uniformly distributed curvature-inducing molecules.
    Lowengrub J; Allard J; Aland S
    J Comput Phys; 2016 Mar; 309():112-128. PubMed ID: 26869729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale Method for Oseen Problem in Porous Media with Non-periodic Grain Patterns.
    Muljadi BP
    Transp Porous Media; 2017; 116(1):1-18. PubMed ID: 32269402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes.
    Li P; Zhang J
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3200. PubMed ID: 30884167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.
    Vorobev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056312. PubMed ID: 21230581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the arterial prestress in blood flow dynamics.
    Pontrelli G
    Med Eng Phys; 2006 Jan; 28(1):6-12. PubMed ID: 15941665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. COMPUTING ILL-POSED TIME-REVERSED 2D NAVIER-STOKES EQUATIONS, USING A STABILIZED EXPLICIT FINITE DIFFERENCE SCHEME MARCHING BACKWARD IN TIME.
    Carasso AS
    Inverse Probl Sci Eng; 2020; 28(7):. PubMed ID: 34131431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergence-free tangential finite element methods for incompressible flows on surfaces.
    Lederer PL; Lehrenfeld C; Schöberl J
    Int J Numer Methods Eng; 2020 Jun; 121(11):2503-2533. PubMed ID: 34853485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling ternary fluids in contact with elastic membranes.
    Pepona M; Shek ACM; Semprebon C; Krüger T; Kusumaatmaja H
    Phys Rev E; 2021 Feb; 103(2-1):022112. PubMed ID: 33735964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.