These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Site-Specific Management of Miscanthus Genotypes for Combustion and Anaerobic Digestion: A Comparison of Energy Yields. Kiesel A; Nunn C; Iqbal Y; Van der Weijde T; Wagner M; Özgüven M; Tarakanov I; Kalinina O; Trindade LM; Clifton-Brown J; Lewandowski I Front Plant Sci; 2017; 8():347. PubMed ID: 28367151 [TBL] [Abstract][Full Text] [Related]
3. Non-structural carbohydrate profiles and ratios between soluble sugars and starch serve as indicators of productivity for a bioenergy grass. Purdy SJ; Maddison AL; Cunniff J; Donnison I; Clifton-Brown J AoB Plants; 2015 Mar; 7():. PubMed ID: 25829378 [TBL] [Abstract][Full Text] [Related]
5. Variability of cell wall recalcitrance and composition in genotypes of Iacono R; Slavov GT; Davey CL; Clifton-Brown J; Allison G; Bosch M Front Plant Sci; 2023; 14():1155188. PubMed ID: 37346113 [No Abstract] [Full Text] [Related]
6. Physiological and transcriptional response to drought stress among bioenergy grass Miscanthus species. De Vega JJ; Teshome A; Klaas M; Grant J; Finnan J; Barth S Biotechnol Biofuels; 2021 Mar; 14(1):60. PubMed ID: 33676571 [TBL] [Abstract][Full Text] [Related]
7. Collecting wild Miscanthus germplasm in Asia for crop improvement and conservation in Europe whilst adhering to the guidelines of the United Nations' Convention on Biological Diversity. Huang LS; Flavell R; Donnison IS; Chiang YC; Hastings A; Hayes C; Heidt C; Hong H; Hsu TW; Humphreys M; Jackson J; Norris J; Schwarz KU; Squance M; Swaller T; Thomas ID; Van Assche W; Xi Q; Yamada T; Youell S; Clifton-Brown J Ann Bot; 2019 Oct; 124(4):591-604. PubMed ID: 30596965 [TBL] [Abstract][Full Text] [Related]
8. Anaerobic digestion of high-yielding tropical energy crops for biomethane production: Effects of crop types, locations and plant parts. Surendra KC; Ogoshi R; Reinhardt-Hanisch A; Oechsner H; Zaleski HM; Hashimoto AG; Khanal SK Bioresour Technol; 2018 Aug; 262():194-202. PubMed ID: 29705611 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of miscanthus productivity and water use efficiency in southeastern United States. Maleski JJ; Bosch DD; Anderson RG; Coffin AW; Anderson WF; Strickland TC Sci Total Environ; 2019 Nov; 692():1125-1134. PubMed ID: 31539944 [TBL] [Abstract][Full Text] [Related]
10. Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield. Robson PR; Farrar K; Gay AP; Jensen EF; Clifton-Brown JC; Donnison IS J Exp Bot; 2013 May; 64(8):2373-83. PubMed ID: 23599277 [TBL] [Abstract][Full Text] [Related]
11. Accelerating the domestication of a bioenergy crop: identifying and modelling morphological targets for sustainable yield increase in Miscanthus. Robson P; Jensen E; Hawkins S; White SR; Kenobi K; Clifton-Brown J; Donnison I; Farrar K J Exp Bot; 2013 Nov; 64(14):4143-55. PubMed ID: 24064927 [TBL] [Abstract][Full Text] [Related]
12. Towards Jensen E; Robson P; Farrar K; Thomas Jones S; Clifton-Brown J; Payne R; Donnison I Glob Change Biol Bioenergy; 2017 May; 9(5):891-908. PubMed ID: 28515789 [TBL] [Abstract][Full Text] [Related]
13. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Lewandowski I; Clifton-Brown J; Trindade LM; van der Linden GC; Schwarz KU; Müller-Sämann K; Anisimov A; Chen CL; Dolstra O; Donnison IS; Farrar K; Fonteyne S; Harding G; Hastings A; Huxley LM; Iqbal Y; Khokhlov N; Kiesel A; Lootens P; Meyer H; Mos M; Muylle H; Nunn C; Özgüven M; Roldán-Ruiz I; Schüle H; Tarakanov I; van der Weijde T; Wagner M; Xi Q; Kalinina O Front Plant Sci; 2016; 7():1620. PubMed ID: 27917177 [TBL] [Abstract][Full Text] [Related]
14. The performance of Zheng C; Yi Z; Xiao L; Sun G; Li M; Xue S; Peng X; Duan M; Chen Z Front Plant Sci; 2022; 13():921824. PubMed ID: 36311103 [TBL] [Abstract][Full Text] [Related]
15. Harvest Time Optimization for Combustion Quality of Different Miscanthus Genotypes across Europe. Iqbal Y; Kiesel A; Wagner M; Nunn C; Kalinina O; Hastings AFSJ; Clifton-Brown JC; Lewandowski I Front Plant Sci; 2017; 8():727. PubMed ID: 28539928 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT. Guo T; Cibin R; Chaubey I; Gitau M; Arnold JG; Srinivasan R; Kiniry JR; Engel BA Sci Total Environ; 2018 Feb; 613-614():724-735. PubMed ID: 28938215 [TBL] [Abstract][Full Text] [Related]
17. Differential expression of starch and sucrose metabolic genes linked to varying biomass yield in Miscanthus hybrids. De Vega JJ; Peel N; Purdy SJ; Hawkins S; Donnison L; Dyer S; Farrar K Biotechnol Biofuels; 2021 Apr; 14(1):98. PubMed ID: 33874976 [TBL] [Abstract][Full Text] [Related]
18. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus. da Costa RM; Lee SJ; Allison GG; Hazen SP; Winters A; Bosch M Ann Bot; 2014 Oct; 114(6):1265-77. PubMed ID: 24737720 [TBL] [Abstract][Full Text] [Related]
19. Assessment of energy crops alternative to maize for biogas production in the Greater Region. Mayer F; Gerin PA; Noo A; Lemaigre S; Stilmant D; Schmit T; Leclech N; Ruelle L; Gennen J; von Francken-Welz H; Foucart G; Flammang J; Weyland M; Delfosse P Bioresour Technol; 2014 Aug; 166():358-67. PubMed ID: 24929279 [TBL] [Abstract][Full Text] [Related]
20. Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize. Spencer JL; Raghu S PLoS One; 2009 Dec; 4(12):e8336. PubMed ID: 20016814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]