BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 28603633)

  • 1. In vitro metabolism of exemestane by hepatic cytochrome P450s: impact of nonsynonymous polymorphisms on formation of the active metabolite 17
    Peterson A; Xia Z; Chen G; Lazarus P
    Pharmacol Res Perspect; 2017 Jun; 5(3):e00314. PubMed ID: 28603633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of nonsynonymous single nucleotide polymorphisms on in-vitro metabolism of exemestane by hepatic cytosolic reductases.
    Platt A; Xia Z; Liu Y; Chen G; Lazarus P
    Pharmacogenet Genomics; 2016 Aug; 26(8):370-80. PubMed ID: 27111237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exemestane potency is unchanged by common nonsynonymous polymorphisms in CYP19A1: results of a novel anti-aromatase activity assay examining exemestane and its derivatives.
    Peterson A; Xia Z; Chen G; Lazarus P
    Pharmacol Res Perspect; 2017 Jun; 5(3):e00313. PubMed ID: 28603632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Cytosolic Glutathione
    Teslenko I; Watson CJW; Xia Z; Chen G; Lazarus P
    Drug Metab Dispos; 2021 Dec; 49(12):1047-1055. PubMed ID: 34593616
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Teslenko I; Watson CJW; Chen G; Lazarus P
    Mol Pharmacol; 2022 Aug; 102(5):216-22. PubMed ID: 35953090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Glutathione-S-Transferase A1*B Allele on the Metabolism of the Aromatase Inhibitor, Exemestane, in Human Liver Cytosols and in Patients Treated With Exemestane.
    Teslenko I; Trudeau J; Luo S; Watson CJW; Chen G; Truica CI; Lazarus P
    J Pharmacol Exp Ther; 2022 Sep; 382(3):327-334. PubMed ID: 35793834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Quantification of Novel Major Metabolites of the Steroidal Aromatase Inhibitor, Exemestane.
    Luo S; Chen G; Truica CI; Baird CC; Xia Z; Lazarus P
    Drug Metab Dispos; 2018 Dec; 46(12):1867-1878. PubMed ID: 30257855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of the UGT2B17 deletion in exemestane pharmacogenetics.
    Luo S; Chen G; Truica C; Baird CC; Leitzel K; Lazarus P
    Pharmacogenomics J; 2018 Apr; 18(2):295-300. PubMed ID: 28534527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of an absolute protein assay for the simultaneous quantification of fourteen CYP450s in human microsomes by HPLC-MS/MS-based targeted proteomics.
    Grangeon A; Clermont V; Barama A; Gaudette F; Turgeon J; Michaud V
    J Pharm Biomed Anal; 2019 Sep; 173():96-107. PubMed ID: 31125949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of human hepatic cytochrome P450 1A2 and 3A4 in the metabolic activation of estrone.
    Shou M; Korzekwa KR; Brooks EN; Krausz KW; Gonzalez FJ; Gelboin HV
    Carcinogenesis; 1997 Jan; 18(1):207-14. PubMed ID: 9054608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triptolide Induces hepatotoxicity via inhibition of CYP450s in Rat liver microsomes.
    Lu Y; Xie T; Zhang Y; Zhou F; Ruan J; Zhu W; Zhu H; Feng Z; Zhou X
    BMC Complement Altern Med; 2017 Jan; 17(1):15. PubMed ID: 28056947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro.
    Spracklin DK; Hankins DC; Fisher JM; Thummel KE; Kharasch ED
    J Pharmacol Exp Ther; 1997 Apr; 281(1):400-11. PubMed ID: 9103523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of a rapid and sensitive LC-MS/MS method for determination of exemestane and its metabolites, 17β-hydroxyexemestane and 17β-hydroxyexemestane-17-O-β-D-glucuronide: application to human pharmacokinetics study.
    Wang LZ; Goh SH; Wong AL; Thuya WL; Lau JY; Wan SC; Lee SC; Ho PC; Goh BC
    PLoS One; 2015; 10(3):e0118553. PubMed ID: 25793887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites.
    Marill J; Cresteil T; Lanotte M; Chabot GG
    Mol Pharmacol; 2000 Dec; 58(6):1341-8. PubMed ID: 11093772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CYP2D6 catalyzes tamoxifen 4-hydroxylation in human liver.
    Dehal SS; Kupfer D
    Cancer Res; 1997 Aug; 57(16):3402-6. PubMed ID: 9270005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of the activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by heterologously expressed human P450 enzymes and the effect of P450-specific chemical inhibitors on this activation in human liver microsomes.
    Patten CJ; Smith TJ; Murphy SE; Wang MH; Lee J; Tynes RE; Koch P; Yang CS
    Arch Biochem Biophys; 1996 Sep; 333(1):127-38. PubMed ID: 8806763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eight inhibitory monoclonal antibodies define the role of individual P-450s in human liver microsomal diazepam, 7-ethoxycoumarin, and imipramine metabolism.
    Yang TJ; Krausz KW; Sai Y; Gonzalez FJ; Gelboin HV
    Drug Metab Dispos; 1999 Jan; 27(1):102-9. PubMed ID: 9884317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Cytochrome P450 Enzyme Responsible for the Production of (Z)-Norendoxifen in vitro.
    Ma J; Chu Z; Lu JBL; Liu J; Zhang Q; Liu Z; Tang D
    Chem Biodivers; 2018 Jan; 15(1):. PubMed ID: 28834279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome P450-mediated metabolism of haloperidol and reduced haloperidol to pyridinium metabolites.
    Avent KM; DeVoss JJ; Gillam EM
    Chem Res Toxicol; 2006 Jul; 19(7):914-20. PubMed ID: 16841959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation.
    Zanger UM; Schwab M
    Pharmacol Ther; 2013 Apr; 138(1):103-41. PubMed ID: 23333322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.