These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 28603803)
1. Controlled release of BSA-linked cisplatin through a PepGel self-assembling peptide nanofiber hydrogel scaffold. Liang J; Liu G; Wang J; Sun XS Amino Acids; 2017 Dec; 49(12):2015-2021. PubMed ID: 28603803 [TBL] [Abstract][Full Text] [Related]
2. Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. Loh XJ; Peh P; Liao S; Sng C; Li J J Control Release; 2010 Apr; 143(2):175-82. PubMed ID: 20064568 [TBL] [Abstract][Full Text] [Related]
3. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold. Koutsopoulos S; Unsworth LD; Nagai Y; Zhang S Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4623-8. PubMed ID: 19273853 [TBL] [Abstract][Full Text] [Related]
4. A self-assembling peptide RADA16-I integrated with spider fibroin uncrystalline motifs. Sun L; Zhao X Int J Nanomedicine; 2012; 7():571-80. PubMed ID: 22346352 [TBL] [Abstract][Full Text] [Related]
5. Two-layered injectable self-assembling peptide scaffold hydrogels for long-term sustained release of human antibodies. Koutsopoulos S; Zhang S J Control Release; 2012 Jun; 160(3):451-8. PubMed ID: 22465676 [TBL] [Abstract][Full Text] [Related]
6. The interaction between self - assembling peptides and emodin and the controlled release of emodin from Wei W; Meng C; Wang Y; Huang Y; Du W; Li H; Liu Y; Song H; Tang F Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):3961-3975. PubMed ID: 31588802 [TBL] [Abstract][Full Text] [Related]
7. Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Liu J; Zhang L; Yang Z; Zhao X Int J Nanomedicine; 2011; 6():2143-53. PubMed ID: 22114478 [TBL] [Abstract][Full Text] [Related]
8. Self-Assembling Multidomain Peptide Nanofibers for Delivery of Bioactive Molecules and Tissue Regeneration. Moore AN; Hartgerink JD Acc Chem Res; 2017 Apr; 50(4):714-722. PubMed ID: 28191928 [TBL] [Abstract][Full Text] [Related]
9. An injectable and self-healing hydrogel for spatiotemporal protein release via fragmentation after passing through needles. Cho IS; Ooya T J Biomater Sci Polym Ed; 2018 Feb; 29(2):145-159. PubMed ID: 29134859 [TBL] [Abstract][Full Text] [Related]
10. Dual-drug encapsulation and release from core-shell nanofibers. Su Y; Su Q; Liu W; Jin G; Mo X; Ramakrishn S J Biomater Sci Polym Ed; 2012; 23(7):861-71. PubMed ID: 21418751 [TBL] [Abstract][Full Text] [Related]
11. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides. Roberts D; Rochas C; Saiani A; Miller AF Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490 [TBL] [Abstract][Full Text] [Related]
12. Fabrication of Hydroxyapatite Nanofiber via Electrospinning as a Carrier for Protein. Zhang C; Li H; Guo Z; Xue B; Zhou C J Nanosci Nanotechnol; 2017 Feb; 17(2):1018-024. PubMed ID: 29671979 [TBL] [Abstract][Full Text] [Related]
14. Biodegradable dextran-polylactide hydrogel network and its controlled release of albumin. Zhang Y; Chu CC J Biomed Mater Res; 2001 Jan; 54(1):1-11. PubMed ID: 11077397 [TBL] [Abstract][Full Text] [Related]
15. Chitosan based hydrogel assisted spongelike calcium phosphate mineralization for in-vitro BSA release. Salama A Int J Biol Macromol; 2018 Mar; 108():471-476. PubMed ID: 29225177 [TBL] [Abstract][Full Text] [Related]
16. Hydrogel-electrospun fiber composite materials for hydrophilic protein release. Han N; Johnson J; Lannutti JJ; Winter JO J Control Release; 2012 Feb; 158(1):165-70. PubMed ID: 22001869 [TBL] [Abstract][Full Text] [Related]
18. pH-Triggered Release of Hydrophobic Molecules from Self-Assembling Hybrid Nanoscaffolds. Lu L; Unsworth LD Biomacromolecules; 2016 Apr; 17(4):1425-36. PubMed ID: 26938197 [TBL] [Abstract][Full Text] [Related]
19. A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior. Kabay G; Demirci C; Kaleli Can G; Meydan AE; Daşan BG; Mutlu M Int J Biol Macromol; 2018 Jul; 114():989-997. PubMed ID: 29621503 [TBL] [Abstract][Full Text] [Related]
20. Low melting point amphiphilic microspheres for delivery of bone morphogenetic protein-6 and transforming growth factor-β3 in a hydrogel matrix. Sukarto A; Amsden BG J Control Release; 2012 Feb; 158(1):53-62. PubMed ID: 22037107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]