These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 28603840)

  • 1. Pretransplant 4β-hydroxycholesterol does not predict tacrolimus exposure or dose requirements during the first days after kidney transplantation.
    Vanhove T; Hasan M; Annaert P; Oswald S; Kuypers DRJ
    Br J Clin Pharmacol; 2017 Nov; 83(11):2406-2415. PubMed ID: 28603840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The CYP3A biomarker 4β-hydroxycholesterol does not improve tacrolimus dose predictions early after kidney transplantation.
    Størset E; Hole K; Midtvedt K; Bergan S; Molden E; Åsberg A
    Br J Clin Pharmacol; 2017 Jul; 83(7):1457-1465. PubMed ID: 28146606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative performance of oral midazolam clearance and plasma 4β-hydroxycholesterol to explain interindividual variability in tacrolimus clearance.
    Vanhove T; de Jonge H; de Loor H; Annaert P; Diczfalusy U; Kuypers DR
    Br J Clin Pharmacol; 2016 Dec; 82(6):1539-1549. PubMed ID: 27501475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of CYP3A4*22 allele on tacrolimus pharmacokinetics in early period after renal transplantation: toward updated genotype-based dosage guidelines.
    Elens L; Capron A; van Schaik RH; De Meyer M; De Pauw L; Eddour DC; Latinne D; Wallemacq P; Mourad M; Haufroid V
    Ther Drug Monit; 2013 Oct; 35(5):608-16. PubMed ID: 24052064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A population pharmacokinetic model to predict the individual starting dose of tacrolimus in adult renal transplant recipients.
    Andrews LM; Hesselink DA; van Schaik RHN; van Gelder T; de Fijter JW; Lloberas N; Elens L; Moes DJAR; de Winter BCM
    Br J Clin Pharmacol; 2019 Mar; 85(3):601-615. PubMed ID: 30552703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined Effect of Inter- and Intrapatient Variability in Tacrolimus Exposure on Graft Impairment Within a 3-Year Period Following Kidney Transplantation: A Single-Center Experience.
    Stefanović NZ; Veličković-Radovanović RM; Danković KS; Mitić BP; Paunović GJ; Cvetković MB; Cvetković TP
    Eur J Drug Metab Pharmacokinet; 2020 Dec; 45(6):749-760. PubMed ID: 32886348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressive decline in tacrolimus clearance after renal transplantation is partially explained by decreasing CYP3A4 activity and increasing haematocrit.
    de Jonge H; Vanhove T; de Loor H; Verbeke K; Kuypers DR
    Br J Clin Pharmacol; 2015 Sep; 80(3):548-59. PubMed ID: 26114223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in Chinese adult renal transplant recipients: a population pharmacokinetic analysis.
    Zuo XC; Ng CM; Barrett JS; Luo AJ; Zhang BK; Deng CH; Xi LY; Cheng K; Ming YZ; Yang GP; Pei Q; Zhu LJ; Yuan H; Liao HQ; Ding JJ; Wu D; Zhou YN; Jing NN; Huang ZJ
    Pharmacogenet Genomics; 2013 May; 23(5):251-61. PubMed ID: 23459029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ABCB1 diplotype on tacrolimus disposition in renal recipients depends on CYP3A5 and CYP3A4 genotype.
    Vanhove T; Annaert P; Lambrechts D; Kuypers DRJ
    Pharmacogenomics J; 2017 Dec; 17(6):556-562. PubMed ID: 27378609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CYP3A pharmacogenetics and tacrolimus disposition in adult heart transplant recipients.
    Deininger KM; Vu A; Page RL; Ambardekar AV; Lindenfeld J; Aquilante CL
    Clin Transplant; 2016 Sep; 30(9):1074-81. PubMed ID: 27314545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age and CYP3A5 genotype affect tacrolimus dosing requirements after transplant in pediatric heart recipients.
    Gijsen V; Mital S; van Schaik RH; Soldin OP; Soldin SJ; van der Heiden IP; Nulman I; Koren G; de Wildt SN
    J Heart Lung Transplant; 2011 Dec; 30(12):1352-9. PubMed ID: 21930396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The combination of CYP3A4*22 and CYP3A5*3 single-nucleotide polymorphisms determines tacrolimus dose requirement after kidney transplantation.
    Lloberas N; Elens L; Llaudó I; Padullés A; van Gelder T; Hesselink DA; Colom H; Andreu F; Torras J; Bestard O; Cruzado JM; Gil-Vernet S; van Schaik R; Grinyó JM
    Pharmacogenet Genomics; 2017 Sep; 27(9):313-322. PubMed ID: 28704257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CYP3A5 polymorphisms and their effects on tacrolimus exposure in an ethnically diverse South African renal transplant population.
    Muller WK; Dandara C; Manning K; Mhandire D; Ensor J; Barday Z; Freercks R
    S Afr Med J; 2020 Jan; 110(2):159-166. PubMed ID: 32657689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative clinical trial of the variability factors of the exposure indices used for the drug monitoring of two tacrolimus formulations in kidney transplant recipients.
    Marquet P; Albano L; Woillard JB; Rostaing L; Kamar N; Sakarovitch C; Gatault P; Buchler M; Charpentier B; Thervet E; Cassuto E
    Pharmacol Res; 2018 Mar; 129():84-94. PubMed ID: 29229354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Population Pharmacokinetic Model to Predict the Individual Starting Dose of Tacrolimus Following Pediatric Renal Transplantation.
    Andrews LM; Hesselink DA; van Gelder T; Koch BCP; Cornelissen EAM; Brüggemann RJM; van Schaik RHN; de Wildt SN; Cransberg K; de Winter BCM
    Clin Pharmacokinet; 2018 Apr; 57(4):475-489. PubMed ID: 28681225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Term Clinical Impact of Adaptation of Initial Tacrolimus Dosing to CYP3A5 Genotype.
    Pallet N; Etienne I; Buchler M; Bailly E; Hurault de Ligny B; Choukroun G; Colosio C; Thierry A; Vigneau C; Moulin B; Le Meur Y; Heng AE; Legendre C; Beaune P; Loriot MA; Thervet E
    Am J Transplant; 2016 Sep; 16(9):2670-5. PubMed ID: 26990694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CYP3A5*3 and ABCB1 61A>G Significantly Influence Dose-adjusted Trough Blood Tacrolimus Concentrations in the First Three Months Post-Kidney Transplantation.
    Hu R; Barratt DT; Coller JK; Sallustio BC; Somogyi AA
    Basic Clin Pharmacol Toxicol; 2018 Sep; 123(3):320-326. PubMed ID: 29603629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Lack of Significant Effect of POR*28 Allelic Variant on Tacrolimus Exposure in Kidney Transplant Recipients.
    Jannot AS; Vuillemin X; Etienne I; Buchler M; Hurault de Ligny B; Choukroun G; Colosio C; Thierry A; Vigneau C; Moulin B; Rerolle JP; Heng AE; Subra JF; Legendre C; Beaune P; Loriot MA; Thervet E; Pallet N
    Ther Drug Monit; 2016 Apr; 38(2):223-9. PubMed ID: 26829596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients.
    Fukudo M; Yano I; Yoshimura A; Masuda S; Uesugi M; Hosohata K; Katsura T; Ogura Y; Oike F; Takada Y; Uemoto S; Inui K
    Pharmacogenet Genomics; 2008 May; 18(5):413-23. PubMed ID: 18408564
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genetic polymorphisms of POR*28 and CYP3A5*3 significantly influence the pharmacokinetics of tacrolimus in Chinese renal transplant recipients.
    Zhang JJ; Liu SB; Xue L; Ding XL; Zhang H; Miao LY
    Int J Clin Pharmacol Ther; 2015 Sep; 53(9):728-36. PubMed ID: 26227094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.