BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28603971)

  • 1. Enhanced and Prolonged Cell-Penetrating Abilities of Arginine-Rich Peptides by Introducing Cyclic α,α-Disubstituted α-Amino Acids with Stapling.
    Oba M; Kunitake M; Kato T; Ueda A; Tanaka M
    Bioconjug Chem; 2017 Jul; 28(7):1801-1806. PubMed ID: 28603971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of six-membered carbocyclic ring α,α-disubstituted amino acids and arginine-rich peptides to investigate the effect of ring size on the properties of the peptide.
    Kato T; Kita Y; Iwanari K; Asano A; Oba M; Tanaka M; Doi M
    Bioorg Med Chem; 2021 May; 38():116111. PubMed ID: 33838611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary structures and cell-penetrating abilities of arginine-rich peptide foldamers.
    Oba M; Nagano Y; Kato T; Tanaka M
    Sci Rep; 2019 Feb; 9(1):1349. PubMed ID: 30718681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-penetrating helical peptides having l-arginines and five-membered ring α,α-disubstituted α-amino acids.
    Kato T; Oba M; Nishida K; Tanaka M
    Bioconjug Chem; 2014 Oct; 25(10):1761-8. PubMed ID: 25188671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Helix-Stabilized Cell-Penetrating Peptide as an Intracellular Delivery Tool.
    Yamashita H; Oba M; Misawa T; Tanaka M; Hattori T; Naito M; Kurihara M; Demizu Y
    Chembiochem; 2016 Jan; 17(2):137-40. PubMed ID: 26560998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of helicity and hydrophobicity on cell-penetrating ability of arginine-rich peptides.
    Oba M; Nakajima S; Misao K; Yokoo H; Tanaka M
    Bioorg Med Chem; 2023 Aug; 91():117409. PubMed ID: 37441862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Penetrating Peptides Using Cyclic α,α-Disubstituted α-Amino Acids with Basic Functional Groups.
    Kato T; Oba M; Nishida K; Tanaka M
    ACS Biomater Sci Eng; 2018 Apr; 4(4):1368-1376. PubMed ID: 33418667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonhemolytic Cell-Penetrating Peptides: Site Specific Introduction of Glutamine and Lysine Residues into the α-Helical Peptide Causes Deletion of Its Direct Membrane Disrupting Ability but Retention of Its Cell Penetrating Ability.
    Kim S; Hyun S; Lee Y; Lee Y; Yu J
    Biomacromolecules; 2016 Sep; 17(9):3007-15. PubMed ID: 27442521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of helix-stabilized cell-penetrating peptides containing cationic α,α-disubstituted amino acids as helical promoters.
    Yamashita H; Misawa T; Oba M; Tanaka M; Naito M; Kurihara M; Demizu Y
    Bioorg Med Chem; 2017 Mar; 25(6):1846-1851. PubMed ID: 28190655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rational design of cell-penetrating peptides for application in delivery systems.
    Kang Z; Ding G; Meng Z; Meng Q
    Peptides; 2019 Nov; 121():170149. PubMed ID: 31491454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides.
    Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP
    Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization, and biological activity of poly(arginine)-derived cancer-targeting peptides in HepG2 liver cancer cells.
    Joseph SC; Blackman BA; Kelly ML; Phillips M; Beaury MW; Martinez I; Parronchi CJ; Bitsaktsis C; Blake AD; Sabatino D
    J Pept Sci; 2014 Sep; 20(9):736-45. PubMed ID: 24931620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and tuning of a cell-penetrating albumin derivative as a versatile nanovehicle for intracellular drug delivery.
    Ichimizu S; Watanabe H; Maeda H; Hamasaki K; Nakamura Y; Chuang VTG; Kinoshita R; Nishida K; Tanaka R; Enoki Y; Ishima Y; Kuniyasu A; Kobashigawa Y; Morioka H; Futaki S; Otagiri M; Maruyama T
    J Control Release; 2018 May; 277():23-34. PubMed ID: 29530390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids.
    Kato T; Yamashita H; Misawa T; Nishida K; Kurihara M; Tanaka M; Demizu Y; Oba M
    Bioorg Med Chem; 2016 Jun; 24(12):2681-7. PubMed ID: 27132868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Peptide Foldamers: Structural Control and Cell-penetrating Ability].
    Oba M
    Yakugaku Zasshi; 2019; 139(4):599-608. PubMed ID: 30930395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stapled peptides for intracellular drug targets.
    Verdine GL; Hilinski GJ
    Methods Enzymol; 2012; 503():3-33. PubMed ID: 22230563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. siRNA delivery using amphipathic cell-penetrating peptides into human hepatoma cells.
    Furukawa K; Tanaka M; Oba M
    Bioorg Med Chem; 2020 Apr; 28(8):115402. PubMed ID: 32146061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Second generation, arginine-rich (R-X'-R)(4)-type cell-penetrating α-ω-α-peptides with constrained, chiral ω-amino acids (X') for enhanced cargo delivery into cells.
    Patil KM; Naik RJ; Vij M; Yadav AK; Kumar VA; Ganguli M; Fernandes M
    Bioorg Med Chem Lett; 2014 Sep; 24(17):4198-202. PubMed ID: 25096299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Designing Cell-Permeable Macrocyclic Peptides.
    Appiah Kubi G; Dougherty PG; Pei D
    Methods Mol Biol; 2019; 2001():41-59. PubMed ID: 31134566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfluoroaryl Bicyclic Cell-Penetrating Peptides for Delivery of Antisense Oligonucleotides.
    Wolfe JM; Fadzen CM; Holden RL; Yao M; Hanson GJ; Pentelute BL
    Angew Chem Int Ed Engl; 2018 Apr; 57(17):4756-4759. PubMed ID: 29479836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.