BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28603971)

  • 21. (R-X-R)
    Bhosle GS; Fernandes M
    ChemMedChem; 2017 Nov; 12(21):1743-1747. PubMed ID: 28948715
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design, Synthesis, and Evaluation of Homochiral Peptides Containing Arginine and Histidine as Molecular Transporters.
    El-Sayed NS; Miyake T; Shirazi AN; Park SE; Clark J; Buchholz S; Parang K; Tiwari R
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29966296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pH-controllable cell-penetrating polypeptide that exhibits cancer targeting.
    Lee D; Noh I; Yoo J; Rejinold NS; Kim YC
    Acta Biomater; 2017 Jul; 57():187-196. PubMed ID: 28528116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane Internalization Mechanisms and Design Strategies of Arginine-Rich Cell-Penetrating Peptides.
    Hao M; Zhang L; Chen P
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural parameters modulating the cellular uptake of disulfide-rich cyclic cell-penetrating peptides: MCoTI-II and SFTI-1.
    D'Souza C; Henriques ST; Wang CK; Craik DJ
    Eur J Med Chem; 2014 Dec; 88():10-8. PubMed ID: 24985034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exploration of the design principles of a cell-penetrating bicylic peptide scaffold.
    Wallbrecher R; Depré L; Verdurmen WP; Bovée-Geurts PH; van Duinkerken RH; Zekveld MJ; Timmerman P; Brock R
    Bioconjug Chem; 2014 May; 25(5):955-64. PubMed ID: 24697151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zwitterionic guanidine-based oligomers mimicking cell-penetrating peptides as a nontoxic alternative to cationic polymers to enhance the cellular uptake of micelles.
    Kim Y; Binauld S; Stenzel MH
    Biomacromolecules; 2012 Oct; 13(10):3418-26. PubMed ID: 22946476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Macrocyclic cell penetrating peptides: a study of structure-penetration properties.
    Traboulsi H; Larkin H; Bonin MA; Volkov L; Lavoie CL; Marsault É
    Bioconjug Chem; 2015 Mar; 26(3):405-11. PubMed ID: 25654426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrophobic and electrostatic interactions between cell penetrating peptides and plasmid DNA are important for stable non-covalent complexation and intracellular delivery.
    Upadhya A; Sangave PC
    J Pept Sci; 2016 Oct; 22(10):647-659. PubMed ID: 27723187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel cell-penetrating peptides based on α-aminoxy acids.
    Ma Y; Yang D; Ma Y; Zhang YH
    Chembiochem; 2012 Jan; 13(1):73-9. PubMed ID: 22162305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of Short Hydrophobic Cell-Penetrating Peptides for Cytosolic Peptide Delivery by Rational Design.
    Schmidt S; Adjobo-Hermans MJ; Kohze R; Enderle T; Brock R; Milletti F
    Bioconjug Chem; 2017 Feb; 28(2):382-389. PubMed ID: 27966361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell-penetrating peptoids: introduction of novel cationic side chains.
    Kölmel DK; Hörner A; Rönicke F; Nieger M; Schepers U; Bräse S
    Eur J Med Chem; 2014 May; 79():231-43. PubMed ID: 24739871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative Molecular Transporter Properties of Cyclic Peptides Containing Tryptophan and Arginine Residues Formed through Disulfide Cyclization.
    Mohammed EHM; Mandal D; Mozaffari S; Abdel-Hamied Zahran M; Mostafa Osman A; Kumar Tiwari R; Parang K
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32498339
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of Substituting Disubstituted Amino Acids into the Amphipathic Cell Penetrating Peptide Pep-1.
    Kato T; Numa H; Nakamachi M; Asano A; Doi M
    Chem Pharm Bull (Tokyo); 2022; 70(11):812-817. PubMed ID: 36328523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Synthesis and characterization of N-octyl-N-arginine chitosan--a chitosan derivant with a mimetic structure of cell-penetrating peptides].
    Liu CY; Pan RR; Jiang TY; Zhou JP; Lü HX
    Yao Xue Xue Bao; 2012 Jun; 47(6):797-802. PubMed ID: 22919730
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cell-Penetrating Peptide Foldamers: Drug-Delivery Tools.
    Oba M
    Chembiochem; 2019 Aug; 20(16):2041-2045. PubMed ID: 30997711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Strategies to stabilize cell penetrating peptides for in vivo applications.
    Fominaya J; Bravo J; Rebollo A
    Ther Deliv; 2015; 6(10):1171-94. PubMed ID: 26448473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery properties.
    Soler M; González-Bártulos M; Soriano-Castell D; Ribas X; Costas M; Tebar F; Massaguer A; Feliu L; Planas M
    Org Biomol Chem; 2014 Mar; 12(10):1652-63. PubMed ID: 24480922
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced intracellular delivery using arginine-rich peptides by the addition of penetration accelerating sequences (Pas).
    Takayama K; Nakase I; Michiue H; Takeuchi T; Tomizawa K; Matsui H; Futaki S
    J Control Release; 2009 Sep; 138(2):128-33. PubMed ID: 19465072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oligoalanine helical callipers for cell penetration.
    Pazo M; Juanes M; Lostalé-Seijo I; Montenegro J
    Chem Commun (Camb); 2018 Jun; 54(50):6919-6922. PubMed ID: 29863199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.