These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28603982)

  • 21. Comparison of the phosphorus and mineral concentrations in bran and abraded kernel fractions of a normal barley (Hordeum vulgare) cultivar versus four low phytic acid isolines.
    Liu K; Peterson KL; Raboy V
    J Agric Food Chem; 2007 May; 55(11):4453-60. PubMed ID: 17488089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of variety, location, growing year, and storage on the total phosphorus, phytate-phosphorus, and phytate-phosphorus to total phosphorus ratio in rice.
    Ahn DJ; Won JG; Rico CM; Lee SC
    J Agric Food Chem; 2010 Mar; 58(5):3008-11. PubMed ID: 20143773
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reducing phosphorus accumulation in rice grains with an impaired transporter in the node.
    Yamaji N; Takemoto Y; Miyaji T; Mitani-Ueno N; Yoshida KT; Ma JF
    Nature; 2017 Jan; 541(7635):92-95. PubMed ID: 28002408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A single nucleotide substitution in the SPDT transporter gene reduced phytic acid and increased mineral bioavailability from Rice grain (Oryza sativa L.).
    Kumar A; Nayak S; Ngangkham U; Sah RP; Lal MK; Tp A; Behera S; Swain P; Behera L; Sharma S
    J Food Biochem; 2021 Jul; 45(7):e13822. PubMed ID: 34121203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development and Molecular Characterization of Low Phytate Basmati Rice Through Induced Mutagenesis, Hybridization, Backcross, and Marker Assisted Breeding.
    Qamar ZU; Hameed A; Ashraf M; Rizwan M; Akhtar M
    Front Plant Sci; 2019; 10():1525. PubMed ID: 31850026
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fine mapping of the rice low phytic acid (Lpa1) locus.
    Andaya CB; Tai TH
    Theor Appl Genet; 2005 Aug; 111(3):489-95. PubMed ID: 15940509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phytic acid in green leaves.
    Hadi Alkarawi H; Zotz G
    Plant Biol (Stuttg); 2014 Jul; 16(4):697-701. PubMed ID: 24341824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphorus uptake, partitioning and redistribution during grain filling in rice.
    Julia C; Wissuwa M; Kretzschmar T; Jeong K; Rose T
    Ann Bot; 2016 Nov; 118(6):1151-1162. PubMed ID: 27590335
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression regulation of myo-inositol 3-phosphate synthase 1 (INO1) in determination of phytic acid accumulation in rice grain.
    Perera I; Fukushima A; Akabane T; Horiguchi G; Seneweera S; Hirotsu N
    Sci Rep; 2019 Oct; 9(1):14866. PubMed ID: 31619750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genotypic variation in lysophospholipids of milled rice.
    Tong C; Liu L; Waters DL; Rose TJ; Bao J; King GJ
    J Agric Food Chem; 2014 Sep; 62(38):9353-61. PubMed ID: 25184742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of stable 'low phytic acid' transgenic rice through antisense repression of the 1D-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter.
    Kuwano M; Mimura T; Takaiwa F; Yoshida KT
    Plant Biotechnol J; 2009 Jan; 7(1):96-105. PubMed ID: 19021878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel allelic variant of Lpa1 gene associated with a significant reduction in seed phytic acid content in rice (Oryza sativa L.).
    Kishor DS; Lee C; Lee D; Venkatesh J; Seo J; Chin JH; Jin Z; Hong SK; Ham JK; Koh HJ
    PLoS One; 2019; 14(3):e0209636. PubMed ID: 30870429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Manipulating the Phytic Acid Content of Rice Grain Toward Improving Micronutrient Bioavailability.
    Perera I; Seneweera S; Hirotsu N
    Rice (N Y); 2018 Jan; 11(1):4. PubMed ID: 29327163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of two low phytic acid mutations on seed quality and nutritional traits in soybean (Glycine max L. Merr).
    Yuan FJ; Zhu DH; Deng B; Fu XJ; Dong DK; Zhu SL; Li BQ; Shu QY
    J Agric Food Chem; 2009 May; 57(9):3632-8. PubMed ID: 19323582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic Control of Seed Phytate Accumulation and the Development of Low-Phytate Crops: A Review and Perspective.
    Wang W; Xie Y; Liu L; King GJ; White P; Ding G; Wang S; Cai H; Wang C; Xu F; Shi L
    J Agric Food Chem; 2022 Mar; 70(11):3375-3390. PubMed ID: 35275483
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progress in breeding low phytate crops.
    Raboy V
    J Nutr; 2002 Mar; 132(3):503S-505S. PubMed ID: 11880580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The contribution of lysophospholipids to pasting and thermal properties of nonwaxy rice starch.
    Tong C; Liu L; Waters DL; Huang Y; Bao J
    Carbohydr Polym; 2015 Nov; 133():187-93. PubMed ID: 26344271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolite profiling of two novel low phytic acid (lpa) soybean mutants.
    Frank T; Nörenberg S; Engel KH
    J Agric Food Chem; 2009 Jul; 57(14):6408-16. PubMed ID: 19601673
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phytic acid content may affect starch digestibility and glycemic index value of rice (Oryza sativa L.).
    Kumar A; Sahu C; Panda PA; Biswal M; Sah RP; Lal MK; Baig MJ; Swain P; Behera L; Chattopadhyay K; Sharma S
    J Sci Food Agric; 2020 Mar; 100(4):1598-1607. PubMed ID: 31773736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accumulation of Phosphorus-Containing Compounds in Developing Seeds of Low-Phytate Pea (Pisum sativum L.) Mutants.
    Shunmugam AS; Bock C; Arganosa GC; Georges F; Gray GR; Warkentin TD
    Plants (Basel); 2014 Dec; 4(1):1-26. PubMed ID: 27135314
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.