BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28603989)

  • 21. Peptides from the Sea Anemone
    Kasheverov IE; Logashina YA; Kornilov FD; Lushpa VA; Maleeva EE; Korolkova YV; Yu J; Zhu X; Zhangsun D; Luo S; Stensvåg K; Kudryavtsev DS; Mineev KS; Andreev YA
    Toxins (Basel); 2022 Dec; 15(1):. PubMed ID: 36668848
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of α3β4 Nicotinic Acetylcholine Receptor Modulators Derived from Aristoquinoline That Reduce Reinstatement of Cocaine-Seeking Behavior.
    Rusali LE; Lopez-Hernandez AM; Kremiller KM; Kulkarni GC; Gour A; Straub CJ; Argade MD; Peters CJ; Sharma A; Toll L; Cippitelli A; Riley AP
    J Med Chem; 2024 Jan; 67(1):529-542. PubMed ID: 38151460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms.
    Dutertre S; Nicke A; Tsetlin VI
    Neuropharmacology; 2017 Dec; 127():196-223. PubMed ID: 28623170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single Amino Acid Substitution in α-Conotoxin TxID Reveals a Specific α3β4 Nicotinic Acetylcholine Receptor Antagonist.
    Yu J; Zhu X; Harvey PJ; Kaas Q; Zhangsun D; Craik DJ; Luo S
    J Med Chem; 2018 Oct; 61(20):9256-9265. PubMed ID: 30252466
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational Design of α-Conotoxins to Target Specific Nicotinic Acetylcholine Receptor Subtypes.
    Wu X; Hone AJ; Huang YH; Clark RJ; McIntosh JM; Kaas Q; Craik DJ
    Chemistry; 2024 Feb; 30(7):e202302909. PubMed ID: 37910861
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loop2 Size Modification Reveals Significant Impacts on the Potency of α-Conotoxin TxID.
    Dong J; Zhang P; Xie J; Xie T; Zhu X; Zhangsun D; Yu J; Luo S
    Mar Drugs; 2023 May; 21(5):. PubMed ID: 37233480
    [TBL] [Abstract][Full Text] [Related]  

  • 27. What We Have Gained from Ibogaine: α3β4 Nicotinic Acetylcholine Receptor Inhibitors as Treatments for Substance Use Disorders.
    Straub CJ; Rusali LE; Kremiller KM; Riley AP
    J Med Chem; 2023 Jan; 66(1):107-121. PubMed ID: 36440853
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescently Labeled α-Conotoxin TxID, a New Probe for α3β4 Neuronal Nicotinic Acetylcholine Receptors.
    Huang M; Zhu X; Yang Y; Tan Y; Luo S; Zhangsun D
    Mar Drugs; 2022 Aug; 20(8):. PubMed ID: 36005514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Could Small Neurotoxins-Peptides be Expressed during SARS-CoV-2 Infection?
    Cafiero C; Micera A; Re A; Postiglione L; Cacciamani A; Schiavone B; Benincasa G; Palmirotta R
    Curr Genomics; 2021 Dec; 22(8):557-563. PubMed ID: 35382352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications.
    Kasheverov I; Kudryavtsev D; Shelukhina I; Nikolaev G; Utkin Y; Tsetlin V
    Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204690
    [TBL] [Abstract][Full Text] [Related]  

  • 31. From Crystal Structures of RgIA4 in Complex with
    Pan S; Fan Y; Zhu X; Xue Y; Luo S; Wang X
    Mar Drugs; 2021 Dec; 19(12):. PubMed ID: 34940708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of Globular and Ribbon [γ4E]GID with α4β2 Neuronal Nicotinic Acetylcholine Receptor.
    Wu X; Craik DJ; Kaas Q
    Mar Drugs; 2021 Aug; 19(9):. PubMed ID: 34564144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Venom-Derived Neurotoxins Targeting Nicotinic Acetylcholine Receptors.
    Bekbossynova A; Zharylgap A; Filchakova O
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34204855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational and Functional Mapping of Human and Rat α6β4 Nicotinic Acetylcholine Receptors Reveals Species-Specific Ligand-Binding Motifs.
    Hone AJ; Kaas Q; Kearns I; Hararah F; Gajewiak J; Christensen S; Craik DJ; McIntosh JM
    J Med Chem; 2021 Feb; 64(3):1685-1700. PubMed ID: 33523678
    [TBL] [Abstract][Full Text] [Related]  

  • 35. α-Conotoxin TxID and [S9K]TxID, α3β4 nAChR Antagonists, Attenuate Expression and Reinstatement of Nicotine-Induced Conditioned Place Preference in Mice.
    Li X; You S; Xiong J; Qiao Y; Yu J; Zhangsun D; Luo S
    Mar Drugs; 2020 Dec; 18(12):. PubMed ID: 33339145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential Expression of Nicotine Acetylcholine Receptors Associates with Human Breast Cancer and Mediates Antitumor Activity of αO-Conotoxin GeXIVA.
    Sun Z; Zhangsun M; Dong S; Liu Y; Qian J; Zhangsun D; Luo S
    Mar Drugs; 2020 Jan; 18(1):. PubMed ID: 31963558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Crucial Residues in α-Conotoxin EI Inhibiting Muscle Nicotinic Acetylcholine Receptor.
    Ning J; Ren J; Xiong Y; Wu Y; Zhangsun M; Zhangsun D; Zhu X; Luo S
    Toxins (Basel); 2019 Oct; 11(10):. PubMed ID: 31623211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PeIA-5466: A Novel Peptide Antagonist Containing Non-natural Amino Acids That Selectively Targets α3β2 Nicotinic Acetylcholine Receptors.
    Hone AJ; Fisher F; Christensen S; Gajewiak J; Larkin D; Whiteaker P; McIntosh JM
    J Med Chem; 2019 Jul; 62(13):6262-6275. PubMed ID: 31194549
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Snails In Silico: A Review of Computational Studies on the Conopeptides.
    Mansbach RA; Travers T; McMahon BH; Fair JM; Gnanakaran S
    Mar Drugs; 2019 Mar; 17(3):. PubMed ID: 30832207
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.