These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 28604367)

  • 1. Ultrafast emission decay with high emission efficiency of quantum dots in plasmonic-dielectric metasubstrates.
    Wing WJ; Sadeghi SM; Gutha RR
    J Phys Condens Matter; 2017 Jul; 29(29):295301. PubMed ID: 28604367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Balancing silicon/aluminum oxide junctions for super-plasmonic emission enhancement of quantum dots via plasmonic metafilms.
    Sadeghi SM; Wing WJ; Gutha RR; Wilt JS; Wu JZ
    Nanoscale; 2018 Mar; 10(10):4825-4832. PubMed ID: 29473074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrahigh Brightening of Infrared PbS Quantum Dots via Collective Energy Transfer Induced by a Metal-Oxide Plasmonic Metastructure.
    Sadeghi SM; Gutha RR; Hatef A; Goul R; Wu JZ
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11913-11921. PubMed ID: 32083841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots.
    Sadeghi SM; West RG; Nejat A
    Nanotechnology; 2011 Oct; 22(40):405202. PubMed ID: 21896983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semiconductor quantum dot super-emitters: spontaneous emission enhancement combined with suppression of defect environment using metal-oxide plasmonic metafilms.
    Sadeghi SM; Wing WJ; Gutha RR; Sharp C
    Nanotechnology; 2018 Jan; 29(1):015402. PubMed ID: 29130899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of spontaneous emission of quantum dots using correlated effects of metal oxides and dielectric materials.
    Sadeghi SM; Wing WJ; Gutha RR; Capps L
    Nanotechnology; 2017 Mar; 28(9):095701. PubMed ID: 28120813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast spontaneous emission source using plasmonic nanoantennas.
    Hoang TB; Akselrod GM; Argyropoulos C; Huang J; Smith DR; Mikkelsen MH
    Nat Commun; 2015 Jul; 6():7788. PubMed ID: 26212857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of emission efficiency of colloidal CdSe quantum dots on silicon substrate via an ultra-thin layer of aluminum oxide.
    Patty K; Sadeghi SM; Nejat A; Mao CB
    Nanotechnology; 2014 Apr; 25(15):155701. PubMed ID: 24642896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of plasmonic array geometry on energy transfer from a quantum well to a quantum dot layer.
    Higgins LJ; Marocico CA; Karanikolas VD; Bell AP; Gough JJ; Murphy GP; Parbrook PJ; Bradley AL
    Nanoscale; 2016 Oct; 8(42):18170-18179. PubMed ID: 27740658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient plasmonic dye-sensitized solar cells with fluorescent Au-encapsulated C-dots.
    Narayanan R; Deepa M; Srivastava AK; Shivaprasad SM
    Chemphyschem; 2014 Apr; 15(6):1106-15. PubMed ID: 24677662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong plasmonic enhancement of biexciton emission: controlled coupling of a single quantum dot to a gold nanocone antenna.
    Matsuzaki K; Vassant S; Liu HW; Dutschke A; Hoffmann B; Chen X; Christiansen S; Buck MR; Hollingsworth JA; Götzinger S; Sandoghdar V
    Sci Rep; 2017 Feb; 7():42307. PubMed ID: 28195140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revolutionizing the FRET-based light emission in core-shell nanostructures via comprehensive activity of surface plasmons.
    Kochuveedu ST; Son T; Lee Y; Lee M; Kim D; Kim DH
    Sci Rep; 2014 Apr; 4():4735. PubMed ID: 24751860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission.
    Wing WJ; Sadeghi SM; Gutha RR; Campbell Q; Mao C
    J Appl Phys; 2015 Sep; 118(12):124302. PubMed ID: 26442574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of ZnO nanorods with plasmonic metal nanoparticles and semiconductor quantum dots.
    Prajapati KN; Johns B; Bandopadhyay K; Silva SRP; Mitra J
    J Chem Phys; 2020 Feb; 152(6):064704. PubMed ID: 32061232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and theoretical investigation of the distance dependence of localized surface plasmon coupled Förster resonance energy transfer.
    Zhang X; Marocico CA; Lunz M; Gerard VA; Gun'ko YK; Lesnyak V; Gaponik N; Susha AS; Rogach AL; Bradley AL
    ACS Nano; 2014 Feb; 8(2):1273-83. PubMed ID: 24490807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral control of plasmonic emission enhancement from quantum dots near single silver nanoprisms.
    Munechika K; Chen Y; Tillack AF; Kulkarni AP; Plante IJ; Munro AM; Ginger DS
    Nano Lett; 2010 Jul; 10(7):2598-603. PubMed ID: 20503980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An experimental and theoretical mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles.
    Dey S; Zhou Y; Tian X; Jenkins JA; Chen O; Zou S; Zhao J
    Nanoscale; 2015 Apr; 7(15):6851-8. PubMed ID: 25806486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly lattice-mismatched semiconductor-metal hybrid nanostructures: gold nanoparticle encapsulated luminescent silicon quantum dots.
    Ray M; Basu TS; Bandyopadhyay NR; Klie RF; Ghosh S; Raja SO; Dasgupta AK
    Nanoscale; 2014 Feb; 6(4):2201-10. PubMed ID: 24382635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot-electron-transfer enhancement for the efficient energy conversion of visible light.
    Yu S; Kim YH; Lee SY; Song HD; Yi J
    Angew Chem Int Ed Engl; 2014 Oct; 53(42):11203-7. PubMed ID: 25169852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.