BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 28604656)

  • 1. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy.
    Jo YH; Jung S; Choi WM; Sohn SS; Kim HS; Lee BJ; Kim NJ; Lee S
    Nat Commun; 2017 Jun; 8():15719. PubMed ID: 28604656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural Evolution and Tensile Properties of Al
    Wang X; Zhang Z; Wang Z; Ren X
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Strength and Plasticity of CoCrNiAl
    Gu XH; Meng YQ; Chang H; Bai TX; Ma SG; Zhang YQ; Song WD; Li ZQ
    Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructure Refinement of a Transformation-Induced Plasticity High-Entropy Alloy.
    Yi H; Wei D; Xie R; Zhang Y; Kato H
    Materials (Basel); 2021 Mar; 14(5):. PubMed ID: 33806373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Strength-Ductility Enhancement of a Nano-Lamellar AlCoCrFeNi
    Bhattacharjee T; Wani IS; Sheikh S; Clark IT; Okawa T; Guo S; Bhattacharjee PP; Tsuji N
    Sci Rep; 2018 Feb; 8(1):3276. PubMed ID: 29459746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure, Texture and Mechanical Properties of AZ31 Magnesium Alloy Fabricated by High Strain Rate Biaxial Forging.
    Wu Y; Liu J; Deng B; Ye T; Li Q; Zhou X; Zhang H
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32650479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strength-Ductility Synergy in a Metastable β Titanium Alloy by Stress Induced Interfacial Twin Boundary ω Phase at Cryogenic Temperatures.
    Li Y; Liao Z; Zhang W; Wu Z; Zhou C
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33113977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures.
    Gludovatz B; Hohenwarter A; Thurston KV; Bei H; Wu Z; George EP; Ritchie RO
    Nat Commun; 2016 Feb; 7():10602. PubMed ID: 26830651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling.
    Klimova M; Stepanov N; Shaysultanov D; Chernichenko R; Yurchenko N; Sanin V; Zherebtsov S
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29286328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Work Hardening Behavior and Microstructure Evolution of a Cu-Ti-Cr-Mg Alloy during Room Temperature and Cryogenic Rolling.
    Li R; Xiao Z; Li Z; Meng X; Wang X
    Materials (Basel); 2023 Jan; 16(1):. PubMed ID: 36614764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength.
    Yang M; Yan D; Yuan F; Jiang P; Ma E; Wu X
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7224-7229. PubMed ID: 29946032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Rolling Process and Aging on the Microstructure and Properties of Cu-1.0Cr-0.1Zr Alloy.
    Zha J; Zhao Y; Qiao Y; Zou H; Hua Z; Zhu W; Han Y; Zu G; Ran X
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unveiling the Stacking Fault-Driven Phase Transition Delaying Cryogenic Fracture in Fe-Co-Cr-Ni-Mo-C-Based Medium-Entropy Alloy.
    Ding H; Du Z; Zhang H; Liu Y; Zhao S; Yang Y; Wang C; Lei S; Geng R; Wang C
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Change of Deformation Mechanisms Leading to High Strength and Large Ductility in Mg-Zn-Zr-Ca Alloy with Fully Recrystallized Ultrafine Grained Microstructures.
    Zheng R; Bhattacharjee T; Gao S; Gong W; Shibata A; Sasaki T; Hono K; Tsuji N
    Sci Rep; 2019 Aug; 9(1):11702. PubMed ID: 31406235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data compilation regarding the effects of grain size and temperature on the strength of the single-phase FCC CrFeNi medium-entropy alloy.
    Schneider M; Laplanche G
    Data Brief; 2021 Feb; 34():106712. PubMed ID: 33490332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels.
    Sohn SS; Song H; Jo MC; Song T; Kim HS; Lee S
    Sci Rep; 2017 Apr; 7(1):1255. PubMed ID: 28455494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Stretch Formability of AZ31 Magnesium Alloy Thin Sheet by Induced Precompression and Sequent Annealing.
    Wang L; Song B; Zhang Z; Zhang H; Han T; Cao X; Wang H; Cheng W
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30103418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. {332}<113> and {112}<111> Twin Variant Activation during Cold-Rolling of a Ti-Nb-Zr-Ta-Sn-Fe Alloy.
    Dan A; Cojocaru EM; Raducanu D; Nocivin A; Cinca I; Cojocaru VD
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strengthening Effects of Zn Addition on an Ultrahigh Ductility Mg-Gd-Zr Magnesium Alloy.
    Hu Y; Zhang C; Zheng T; Pan F; Tang A
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30314339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Annealing on Microstructure and Tensile Behavior of CoCrNi Medium Entropy Alloy Processed by High-Pressure Torsion.
    Sathiyamoorthi P; Bae JW; Asghari-Rad P; Park JM; Kim JG; Kim HS
    Entropy (Basel); 2018 Nov; 20(11):. PubMed ID: 33266573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.