BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28604693)

  • 1. Genetically encoding phosphotyrosine and its nonhydrolyzable analog in bacteria.
    Luo X; Fu G; Wang RE; Zhu X; Zambaldo C; Liu R; Liu T; Lyu X; Du J; Xuan W; Yao A; Reed SA; Kang M; Zhang Y; Guo H; Huang C; Yang PY; Wilson IA; Schultz PG; Wang F
    Nat Chem Biol; 2017 Aug; 13(8):845-849. PubMed ID: 28604693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetically encoded metabolically stable analogue of phosphotyrosine in Escherichia coli.
    Xie J; Supekova L; Schultz PG
    ACS Chem Biol; 2007 Jul; 2(7):474-8. PubMed ID: 17622177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic encoding of a nonhydrolyzable phosphotyrosine analog in mammalian cells.
    He X; Ma B; Chen Y; Guo J; Niu W
    Chem Commun (Camb); 2022 May; 58(39):5897-5900. PubMed ID: 35474127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog.
    Rogerson DT; Sachdeva A; Wang K; Haq T; Kazlauskaite A; Hancock SM; Huguenin-Dezot N; Muqit MM; Fry AM; Bayliss R; Chin JW
    Nat Chem Biol; 2015 Jul; 11(7):496-503. PubMed ID: 26030730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expanding the genetic code of Escherichia coli with phosphotyrosine.
    Fan C; Ip K; Söll D
    FEBS Lett; 2016 Sep; 590(17):3040-7. PubMed ID: 27477338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-Specific Incorporation of Unnatural Amino Acids into Escherichia coli Recombinant Protein: Methodology Development and Recent Achievement.
    Smolskaya S; Andreev YA
    Biomolecules; 2019 Jun; 9(7):. PubMed ID: 31261745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific incorporation of phosphotyrosine using an expanded genetic code.
    Hoppmann C; Wong A; Yang B; Li S; Hunter T; Shokat KM; Wang L
    Nat Chem Biol; 2017 Aug; 13(8):842-844. PubMed ID: 28604697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing protein tyrosine phosphatases by phosphotyrosine analog integration.
    Shen K
    Methods; 2007 Jul; 42(3):234-42. PubMed ID: 17532510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombinant expression of selectively sulfated proteins in Escherichia coli.
    Liu CC; Schultz PG
    Nat Biotechnol; 2006 Nov; 24(11):1436-40. PubMed ID: 17072302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of an orthogonal aminoacyl-tRNA synthetase for efficient incorporation of the non-natural amino acid O-methyl-L-tyrosine using fluorescence-based bacterial cell sorting.
    Kuhn SM; Rubini M; Fuhrmann M; Theobald I; Skerra A
    J Mol Biol; 2010 Nov; 404(1):70-87. PubMed ID: 20837025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient expression of tyrosine-sulfated proteins in E. coli using an expanded genetic code.
    Liu CC; Cellitti SE; Geierstanger BH; Schultz PG
    Nat Protoc; 2009; 4(12):1784-9. PubMed ID: 20010929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Incorporation of ε-N-2-Hydroxyisobutyryl-lysine into Recombinant Histones.
    Xiao H; Xuan W; Shao S; Liu T; Schultz PG
    ACS Chem Biol; 2015 Jul; 10(7):1599-603. PubMed ID: 25909834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The de novo engineering of pyrrolysyl-tRNA synthetase for genetic incorporation of L-phenylalanine and its derivatives.
    Wang YS; Russell WK; Wang Z; Wan W; Dodd LE; Pai PJ; Russell DH; Liu WR
    Mol Biosyst; 2011 Mar; 7(3):714-7. PubMed ID: 21234492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lock on phosphotyrosine signaling.
    Muratore KE; Cole PA
    ACS Chem Biol; 2007 Jul; 2(7):454-6. PubMed ID: 17649969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanded cellular amino acid pools containing phosphoserine, phosphothreonine, and phosphotyrosine.
    Steinfeld JB; Aerni HR; Rogulina S; Liu Y; Rinehart J
    ACS Chem Biol; 2014 May; 9(5):1104-12. PubMed ID: 24646179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new strategy for the site-specific modification of proteins in vivo.
    Zhang Z; Smith BA; Wang L; Brock A; Cho C; Schultz PG
    Biochemistry; 2003 Jun; 42(22):6735-46. PubMed ID: 12779328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimisation of a system for the co-translational incorporation of a keto amino acid and its application to a tumour-specific Anticalin.
    Reichert AJ; Poxleitner G; Dauner M; Skerra A
    Protein Eng Des Sel; 2015 Dec; 28(12):553-65. PubMed ID: 26405058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine.
    Sun R; Zheng H; Fang Z; Yao W
    Biochem Biophys Res Commun; 2010 Jan; 391(1):709-15. PubMed ID: 19944076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The incorporation of a photoisomerizable amino acid into proteins in E. coli.
    Bose M; Groff D; Xie J; Brustad E; Schultz PG
    J Am Chem Soc; 2006 Jan; 128(2):388-9. PubMed ID: 16402807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites.
    Ozawa K; Loscha KV; Kuppan KV; Loh CT; Dixon NE; Otting G
    Biochem Biophys Res Commun; 2012 Feb; 418(4):652-6. PubMed ID: 22293204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.