These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 28604706)

  • 1. Electrical tuning of a quantum plasmonic resonance.
    Liu X; Kang JH; Yuan H; Park J; Kim SJ; Cui Y; Hwang HY; Brongersma ML
    Nat Nanotechnol; 2017 Sep; 12(9):866-870. PubMed ID: 28604706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ITO-TiN-ITO Sandwiches for Near-Infrared Plasmonic Materials.
    Chen C; Wang Z; Wu K; Chong H; Xu Z; Ye H
    ACS Appl Mater Interfaces; 2018 May; 10(17):14886-14893. PubMed ID: 29644842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films.
    Franzen S; Rhodes C; Cerruti M; Gerber RW; Losego M; Maria JP; Aspnes DE
    Opt Lett; 2009 Sep; 34(18):2867-9. PubMed ID: 19756132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum plasmon resonances of individual metallic nanoparticles.
    Scholl JA; Koh AL; Dionne JA
    Nature; 2012 Mar; 483(7390):421-7. PubMed ID: 22437611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-Dependent Plasmonic Resonances from Large-Scale Quantum Simulations.
    Xiang H; Zhang X; Neuhauser D; Lu G
    J Phys Chem Lett; 2014 Apr; 5(7):1163-9. PubMed ID: 26274465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How To Identify Plasmons from the Optical Response of Nanostructures.
    Zhang R; Bursi L; Cox JD; Cui Y; Krauter CM; Alabastri A; Manjavacas A; Calzolari A; Corni S; Molinari E; Carter EA; García de Abajo FJ; Zhang H; Nordlander P
    ACS Nano; 2017 Jul; 11(7):7321-7335. PubMed ID: 28651057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region.
    Kanehara M; Koike H; Yoshinaga T; Teranishi T
    J Am Chem Soc; 2009 Dec; 131(49):17736-7. PubMed ID: 19921844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear plasmonic response in atomically thin metal films.
    Rodríguez Echarri Á; Cox JD; Iyikanat F; García de Abajo FJ
    Nanophotonics; 2021 Nov; 10(16):4149-4159. PubMed ID: 36425323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles.
    Guidez EB; Aikens CM
    Nanoscale; 2014 Oct; 6(20):11512-27. PubMed ID: 25163494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array.
    Chou SY; Ding W
    Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do We Really Need Quantum Mechanics to Describe Plasmonic Properties of Metal Nanostructures?
    Giovannini T; Bonatti L; Lafiosca P; Nicoli L; Castagnola M; Illobre PG; Corni S; Cappelli C
    ACS Photonics; 2022 Sep; 9(9):3025-3034. PubMed ID: 36164484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning Collective Plasmon Resonances of Femtosecond Laser-Printed Metasurface.
    Pavlov D; Zhizhchenko A; Pan L; Kuchmizhak AA
    Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum electrodynamics and plasmonic resonance of metallic nanostructures.
    Zhang M; Xiang H; Zhang X; Lu G
    J Phys Condens Matter; 2016 Apr; 28(15):155302. PubMed ID: 26987436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarization-sensitive linear plasmonic nanostructures via colloidal lithography with uniaxial colloidal arrays.
    Saracut V; Giloan M; Gabor M; Astilean S; Farcau C
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1362-9. PubMed ID: 23339469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum sized gold nanoclusters with atomic precision.
    Qian H; Zhu M; Wu Z; Jin R
    Acc Chem Res; 2012 Sep; 45(9):1470-9. PubMed ID: 22720781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of hot electrons in nanostructures incorporating conventional and unconventional plasmonic materials.
    Liu T; Besteiro LV; Wang Z; Govorov AO
    Faraday Discuss; 2019 May; 214():199-213. PubMed ID: 30830140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface measurement of indium tin oxide thin film by wavelength-tuning Fizeau interferometry.
    Kim Y; Hibino K; Sugita N; Mitsuishi M
    Appl Opt; 2015 Aug; 54(23):7135-41. PubMed ID: 26368388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thickness-Dependent Drude Plasma Frequency in Transdimensional Plasmonic TiN.
    Shah D; Yang M; Kudyshev Z; Xu X; Shalaev VM; Bondarev IV; Boltasseva A
    Nano Lett; 2022 Jun; 22(12):4622-4629. PubMed ID: 35640070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.