BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 28604721)

  • 1. Comparison of computational methods for Hi-C data analysis.
    Forcato M; Nicoletti C; Pal K; Livi CM; Ferrari F; Bicciato S
    Nat Methods; 2017 Jul; 14(7):679-685. PubMed ID: 28604721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions.
    Yan KK; Lou S; Gerstein M
    PLoS Comput Biol; 2017 Jul; 13(7):e1005647. PubMed ID: 28742097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for the Analysis of Topologically Associating Domains (TADs).
    Zufferey M; Tavernari D; Ciriello G
    Methods Mol Biol; 2022; 2301():39-59. PubMed ID: 34415530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Analysis of Hi-C Data.
    Forcato M; Bicciato S
    Methods Mol Biol; 2021; 2157():103-125. PubMed ID: 32820401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of computational methods for 3D genome analysis at single-cell Hi-C level.
    Li X; An Z; Zhang Z
    Methods; 2020 Oct; 181-182():52-61. PubMed ID: 31445093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of 3D Chromatin Interactions Using Hi-C.
    Hu G
    Methods Mol Biol; 2020; 2117():65-78. PubMed ID: 31960372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparison of Topologically Associating Domain Callers Based on Hi-C Data.
    Liu K; Li HD; Li Y; Wang J; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):15-29. PubMed ID: 35104223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detecting Spatial Chromatin Organization by Chromosome Conformation Capture II: Genome-Wide Profiling by Hi-C.
    Vietri Rudan M; Hadjur S; Sexton T
    Methods Mol Biol; 2017; 1589():47-74. PubMed ID: 26900130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hi-C sequencing unravels dynamic three-dimensional chromatin interactions in muntjac lineage: insights from chromosome fusions in Fea's muntjac genome.
    Jehangir M; Ahmad SF; Singchat W; Panthum T; Thong T; Aramsirirujiwet P; Lisachov A; Muangmai N; Han K; Koga A; Duengkae P; Srikulnath K
    Chromosome Res; 2023 Nov; 31(4):34. PubMed ID: 38017297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LPAD: using network construction and label propagation to detect topologically associating domains from Hi-C data.
    Liu J; Li P; Sun J; Guo J
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37139561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4Cin: A computational pipeline for 3D genome modeling and virtual Hi-C analyses from 4C data.
    Irastorza-Azcarate I; Acemel RD; Tena JJ; Maeso I; Gómez-Skarmeta JL; Devos DP
    PLoS Comput Biol; 2018 Mar; 14(3):e1006030. PubMed ID: 29522512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico prediction of high-resolution Hi-C interaction matrices.
    Zhang S; Chasman D; Knaack S; Roy S
    Nat Commun; 2019 Dec; 10(1):5449. PubMed ID: 31811132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains.
    Ulianov SV; Khrameeva EE; Gavrilov AA; Flyamer IM; Kos P; Mikhaleva EA; Penin AA; Logacheva MD; Imakaev MV; Chertovich A; Gelfand MS; Shevelyov YY; Razin SV
    Genome Res; 2016 Jan; 26(1):70-84. PubMed ID: 26518482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing long-range interactions by extracting free energies from genome-wide chromosome conformation capture data.
    Saberi S; Farré P; Cuvier O; Emberly E
    BMC Bioinformatics; 2015 May; 16():171. PubMed ID: 26001583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5C-ID: Increased resolution Chromosome-Conformation-Capture-Carbon-Copy with in situ 3C and double alternating primer design.
    Kim JH; Titus KR; Gong W; Beagan JA; Cao Z; Phillips-Cremins JE
    Methods; 2018 Jun; 142():39-46. PubMed ID: 29772275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SpectralTAD: an R package for defining a hierarchy of topologically associated domains using spectral clustering.
    Cresswell KG; Stansfield JC; Dozmorov MG
    BMC Bioinformatics; 2020 Jul; 21(1):319. PubMed ID: 32689928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data.
    MacKay K; Kusalik A
    Brief Funct Genomics; 2020 Jul; 19(4):292-308. PubMed ID: 32353112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome Conformation Capture Followed by Genome-Wide Sequencing (Hi-C) in Drosophila Embryos.
    Cardamone F; Zhan Y; Iovino N; Zenk F
    Methods Mol Biol; 2023; 2655():41-55. PubMed ID: 37212987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering 3D Organization of Chromosomes Using Hi-C Data.
    Hofmann A; Heermann DW
    Methods Mol Biol; 2018; 1837():389-401. PubMed ID: 30109620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.