These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 28604768)

  • 1. Rosetta:MSF: a modular framework for multi-state computational protein design.
    Löffler P; Schmitz S; Hupfeld E; Sterner R; Merkl R
    PLoS Comput Biol; 2017 Jun; 13(6):e1005600. PubMed ID: 28604768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rosetta:MSF:NN: Boosting performance of multi-state computational protein design with a neural network.
    Nazet J; Lang E; Merkl R
    PLoS One; 2021; 16(8):e0256691. PubMed ID: 34437621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-based design of novel protein structures.
    Butterfoss GL; Kuhlman B
    Annu Rev Biophys Biomol Struct; 2006; 35():49-65. PubMed ID: 16689627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Pruning algorithms and Divide-and-Conquer strategies for Dead-End Elimination, with application to protein design.
    Georgiev I; Lilien RH; Donald BR
    Bioinformatics; 2006 Jul; 22(14):e174-83. PubMed ID: 16873469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of Protein Multi-specificity Using an Independent Sequence Search Reduces the Barrier to Low Energy Sequences.
    Sevy AM; Jacobs TM; Crowe JE; Meiler J
    PLoS Comput Biol; 2015 Jul; 11(7):e1004300. PubMed ID: 26147100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biskit--a software platform for structural bioinformatics.
    Grünberg R; Nilges M; Leckner J
    Bioinformatics; 2007 Mar; 23(6):769-70. PubMed ID: 17237072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Method Using Abstract Convex Underestimation in Ab-Initio Protein Structure Prediction for Guiding Search in Conformational Feature Space.
    Hao XH; Zhang GJ; Zhou XG; Yu XF
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(5):887-900. PubMed ID: 26552093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
    Ojewole A; Lowegard A; Gainza P; Reeve SM; Georgiev I; Anderson AC; Donald BR
    Methods Mol Biol; 2017; 1529():291-306. PubMed ID: 27914058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel, provable algorithms for efficient ensemble-based computational protein design and their application to the redesign of the c-Raf-RBD:KRas protein-protein interface.
    Lowegard AU; Frenkel MS; Holt GT; Jou JD; Ojewole AA; Donald BR
    PLoS Comput Biol; 2020 Jun; 16(6):e1007447. PubMed ID: 32511232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Overview of Computational and Experimental Methods for Designing Novel Proteins.
    Gulati K; Poluri KM
    Recent Pat Biotechnol; 2016; 10(3):235-263. PubMed ID: 27745543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New computational protein design methods for de novo small molecule binding sites.
    Lucas JE; Kortemme T
    PLoS Comput Biol; 2020 Oct; 16(10):e1008178. PubMed ID: 33017412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Rosetta with molecular dynamics (MD): A benchmark of the MD-based ensemble protein design.
    Ludwiczak J; Jarmula A; Dunin-Horkawicz S
    J Struct Biol; 2018 Jul; 203(1):54-61. PubMed ID: 29454111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast and accurate multi-class protein fold recognition with spatial sample kernels.
    Kuksa P; Huang PH; Pavlovic V
    Comput Syst Bioinformatics Conf; 2008; 7():133-43. PubMed ID: 19642275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational protein design promises to revolutionize protein engineering.
    Alvizo O; Allen BD; Mayo SL
    Biotechniques; 2007 Jan; 42(1):31, 33, 35 passim. PubMed ID: 17269482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocols for Molecular Modeling with Rosetta3 and RosettaScripts.
    Bender BJ; Cisneros A; Duran AM; Finn JA; Fu D; Lokits AD; Mueller BK; Sangha AK; Sauer MF; Sevy AM; Sliwoski G; Sheehan JH; DiMaio F; Meiler J; Moretti R
    Biochemistry; 2016 Aug; 55(34):4748-63. PubMed ID: 27490953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MAGOS: multiple alignment and modelling server.
    Garnier N; Friedrich A; Bolze R; Bettler E; Moulinier L; Geourjon C; Thompson JD; Deléage G; Poch O
    Bioinformatics; 2006 Sep; 22(17):2164-5. PubMed ID: 16820425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representing structural information with RasMol.
    Goodsell DS
    Curr Protoc Bioinformatics; 2005 Oct; Chapter 5():Unit 5.4. PubMed ID: 18428750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A coarse-grained Langevin molecular dynamics approach to de novo protein structure prediction.
    Sasaki TN; Cetin H; Sasai M
    Biochem Biophys Res Commun; 2008 May; 369(2):500-6. PubMed ID: 18294960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput modeling and analysis of protein structural dynamics.
    Liu X; Karimi HA
    Brief Bioinform; 2007 Nov; 8(6):432-45. PubMed ID: 17485424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rosetta FunFolDes - A general framework for the computational design of functional proteins.
    Bonet J; Wehrle S; Schriever K; Yang C; Billet A; Sesterhenn F; Scheck A; Sverrisson F; Veselkova B; Vollers S; Lourman R; Villard M; Rosset S; Krey T; Correia BE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006623. PubMed ID: 30452434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.