These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28604768)

  • 21. High-throughput modeling and analysis of protein structural dynamics.
    Liu X; Karimi HA
    Brief Bioinform; 2007 Nov; 8(6):432-45. PubMed ID: 17485424
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rosetta FunFolDes - A general framework for the computational design of functional proteins.
    Bonet J; Wehrle S; Schriever K; Yang C; Billet A; Sesterhenn F; Scheck A; Sverrisson F; Veselkova B; Vollers S; Lourman R; Villard M; Rosset S; Krey T; Correia BE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006623. PubMed ID: 30452434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MESHI: a new library of Java classes for molecular modeling.
    Kalisman N; Levi A; Maximova T; Reshef D; Zafriri-Lynn S; Gleyzer Y; Keasar C
    Bioinformatics; 2005 Oct; 21(20):3931-2. PubMed ID: 16105898
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extensive exploration of conformational space improves Rosetta results for short protein domains.
    Li Y; Bordner AJ; Tian Y; Tao X; Gorin AA
    Comput Syst Bioinformatics Conf; 2008; 7():203-9. PubMed ID: 19642281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fast gap-free enumeration of conformations and sequences for protein design.
    Roberts KE; Gainza P; Hallen MA; Donald BR
    Proteins; 2015 Oct; 83(10):1859-1877. PubMed ID: 26235965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new framework for computational protein design through cost function network optimization.
    Traoré S; Allouche D; André I; de Givry S; Katsirelos G; Schiex T; Barbe S
    Bioinformatics; 2013 Sep; 29(17):2129-36. PubMed ID: 23842814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative modeling without implicit sequence alignments.
    Kolinski A; Gront D
    Bioinformatics; 2007 Oct; 23(19):2522-7. PubMed ID: 17660201
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enzyme-like proteins from an unselected library of designed amino acid sequences.
    Wei Y; Hecht MH
    Protein Eng Des Sel; 2004 Jan; 17(1):67-75. PubMed ID: 14985539
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adding some SPICE to DAS.
    Prlić A; Down TA; Hubbard TJ
    Bioinformatics; 2005 Sep; 21 Suppl 2(Suppl 2):ii40-1. PubMed ID: 16204122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational Design of Ligand Binding Proteins.
    Tinberg CE; Khare SD
    Methods Mol Biol; 2017; 1529():363-373. PubMed ID: 27914062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Practically useful: what the Rosetta protein modeling suite can do for you.
    Kaufmann KW; Lemmon GH; Deluca SL; Sheehan JH; Meiler J
    Biochemistry; 2010 Apr; 49(14):2987-98. PubMed ID: 20235548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. BDT: an easy-to-use front-end application for automation of massive docking tasks and complex docking strategies with AutoDock.
    Vaqué M; Arola A; Aliagas C; Pujadas G
    Bioinformatics; 2006 Jul; 22(14):1803-4. PubMed ID: 16720587
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. rstoolbox - a Python library for large-scale analysis of computational protein design data and structural bioinformatics.
    Bonet J; Harteveld Z; Sesterhenn F; Scheck A; Correia BE
    BMC Bioinformatics; 2019 May; 20(1):240. PubMed ID: 31092198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An introduction to modeling structure from sequence.
    Petsko GA
    Curr Protoc Bioinformatics; 2006 Oct; Chapter 5():Unit 5.1. PubMed ID: 18428765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tools for integrated sequence-structure analysis with UCSF Chimera.
    Meng EC; Pettersen EF; Couch GS; Huang CC; Ferrin TE
    BMC Bioinformatics; 2006 Jul; 7():339. PubMed ID: 16836757
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein design for diversity of sequences and conformations using dead-end elimination.
    Hanf KJ
    Methods Mol Biol; 2012; 899():127-44. PubMed ID: 22735950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. FAMS and FAMSBASE for protein structure.
    Umeyama H; Iwadate M
    Curr Protoc Bioinformatics; 2004 Feb; Chapter 5():Unit5.2. PubMed ID: 18428727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of Rosetta flexible-backbone computational protein design methods on binding interactions.
    Loshbaugh AL; Kortemme T
    Proteins; 2020 Jan; 88(1):206-226. PubMed ID: 31344278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.