BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 28604778)

  • 1. p63 exerts spatio-temporal control of palatal epithelial cell fate to prevent cleft palate.
    Richardson R; Mitchell K; Hammond NL; Mollo MR; Kouwenhoven EN; Wyatt ND; Donaldson IJ; Zeef L; Burgis T; Blance R; van Heeringen SJ; Stunnenberg HG; Zhou H; Missero C; Romano RA; Sinha S; Dixon MJ; Dixon J
    PLoS Genet; 2017 Jun; 13(6):e1006828. PubMed ID: 28604778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TGFβ3 regulates periderm removal through ΔNp63 in the developing palate.
    Hu L; Liu J; Li Z; Ozturk F; Gurumurthy C; Romano RA; Sinha S; Nawshad A
    J Cell Physiol; 2015 Jun; 230(6):1212-25. PubMed ID: 25358290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periderm: Life-cycle and function during orofacial and epidermal development.
    Hammond NL; Dixon J; Dixon MJ
    Semin Cell Dev Biol; 2019 Jul; 91():75-83. PubMed ID: 28803895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra-amniotic transient transduction of the periderm with a viral vector encoding TGFβ3 prevents cleft palate in Tgfβ3(-/-) mouse embryos.
    Wu C; Endo M; Yang BH; Radecki MA; Davis PF; Zoltick PW; Spivak RM; Flake AW; Kirschner RE; Nah HD
    Mol Ther; 2013 Jan; 21(1):8-17. PubMed ID: 23089732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperation between the transcription factors p63 and IRF6 is essential to prevent cleft palate in mice.
    Thomason HA; Zhou H; Kouwenhoven EN; Dotto GP; Restivo G; Nguyen BC; Little H; Dixon MJ; van Bokhoven H; Dixon J
    J Clin Invest; 2010 May; 120(5):1561-9. PubMed ID: 20424327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive activation of hedgehog signaling adversely affects epithelial cell fate during palatal fusion.
    Li J; Yuan Y; He J; Feng J; Han X; Jing J; Ho TV; Xu J; Chai Y
    Dev Biol; 2018 Sep; 441(1):191-203. PubMed ID: 29981310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epithelial Wnt/β-catenin signaling regulates palatal shelf fusion through regulation of Tgfβ3 expression.
    He F; Xiong W; Wang Y; Li L; Liu C; Yamagami T; Taketo MM; Zhou C; Chen Y
    Dev Biol; 2011 Feb; 350(2):511-9. PubMed ID: 21185284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell autonomous requirement for Tgfbr2 in the disappearance of medial edge epithelium during palatal fusion.
    Xu X; Han J; Ito Y; Bringas P; Urata MM; Chai Y
    Dev Biol; 2006 Sep; 297(1):238-48. PubMed ID: 16780827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of IRF6 and Jagged2 signalling is essential for controlling palatal adhesion and fusion competence.
    Richardson RJ; Dixon J; Jiang R; Dixon MJ
    Hum Mol Genet; 2009 Jul; 18(14):2632-42. PubMed ID: 19439425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periderm Fate during Palatogenesis: TGF-β and Periderm Dedifferentiation.
    Saroya G; Hu J; Hu M; Panaretos C; Mann J; Kim S; Bush JO; Kaartinen V
    J Dent Res; 2023 Apr; 102(4):459-466. PubMed ID: 36751050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward pathogenesis of Apert cleft palate: FGF, FGFR, and TGF beta genes are differentially expressed in sequential stages of human palatal shelf fusion.
    Britto JA; Evans RD; Hayward RD; Jones BM
    Cleft Palate Craniofac J; 2002 May; 39(3):332-40. PubMed ID: 12019011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles: RNA-Seq analysis of TGFβ3 Mice.
    Ozturk F; Li Y; Zhu X; Guda C; Nawshad A
    BMC Genomics; 2013 Feb; 14():113. PubMed ID: 23421592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of palate epithelial mesenchymal transition by transforming growth factor β3 signaling.
    Jalali A; Zhu X; Liu C; Nawshad A
    Dev Growth Differ; 2012 Aug; 54(6):633-48. PubMed ID: 22775504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal Expression of miRNAs in Laser Capture Microdissected Palate Medial Edge Epithelium from Tgfβ3(-/-) Mouse Fetuses.
    Warner D; Ding J; Mukhopadhyay P; Brock G; Smolenkova IA; Seelan RS; Webb CL; Wittliff JL; Greene RM; Pisano MM
    Microrna; 2015; 4(1):64-71. PubMed ID: 26159804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice.
    Noda K; Mishina Y; Komatsu Y
    Dev Biol; 2016 Jul; 415(2):306-313. PubMed ID: 26116174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The roles of JAK2/STAT3 signaling in fusion of the secondary palate.
    Yoshida N; Inubushi T; Hirose T; Aoyama G; Kurosaka H; Yamashiro T
    Dis Model Mech; 2023 Oct; 16(10):. PubMed ID: 37846594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the epithelial adhesion molecule CEACAM1 is important for palate formation.
    Mima J; Koshino A; Oka K; Uchida H; Hieda Y; Nohara K; Kogo M; Chai Y; Sakai T
    PLoS One; 2013; 8(4):e61653. PubMed ID: 23613893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mouse models in palate development and orofacial cleft research: Understanding the crucial role and regulation of epithelial integrity in facial and palate morphogenesis.
    Lan Y; Jiang R
    Curr Top Dev Biol; 2022; 148():13-50. PubMed ID: 35461563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of Smad2 in Tgf-beta3-null mutant mice rescues cleft palate.
    Cui XM; Shiomi N; Chen J; Saito T; Yamamoto T; Ito Y; Bringas P; Chai Y; Shuler CF
    Dev Biol; 2005 Feb; 278(1):193-202. PubMed ID: 15649471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SMAD2 overexpression rescues the TGF-β3 null mutant mice cleft palate by increased apoptosis.
    AlMegbel AM; Shuler CF
    Differentiation; 2020; 111():60-69. PubMed ID: 31677482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.