BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 28604851)

  • 1. Analysis of ribonuclease activity in sub-nanoliter droplets by label-free fluorescence measurements.
    Choi JW; Vasamsetti BMK; Kim KW; Seo SH; Lee DH; Chang SI; Choo J; Kim HY
    Analyst; 2017 Jul; 142(14):2610-2616. PubMed ID: 28604851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple assay for the ribonuclease activity of ribonucleases in the presence of ethidium bromide.
    Tripathy DR; Dinda AK; Dasgupta S
    Anal Biochem; 2013 Jun; 437(2):126-9. PubMed ID: 23499964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of deoxyribonuclease activity by conjugation-free fluorescence polarisation in sub-nanolitre droplets.
    Choi JW; Vasamsetti BMK; Choo J; Kim HY
    Analyst; 2020 May; 145(9):3222-3228. PubMed ID: 32118224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity measurement and multiplicity detection of human secretory-type ribonuclease based on polycytidylic acid/ethidium bromide fluorescence.
    Nadano D; Yasuda T; Sawazaki K; Takeshita H; Kishi K
    Anal Biochem; 1993 Jul; 212(1):111-6. PubMed ID: 8368482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The zymogram method for detection of ribonucleases after isoelectric focusing: analysis of multiple forms of human, bovine, and microbial enzymes.
    Yasuda T; Nadano D; Tenjo E; Takeshita H; Kishi K
    Anal Biochem; 1992 Oct; 206(1):172-7. PubMed ID: 1280919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. pH gradient electrophoresis of basic ribonucleases in sealed slab polyacrylamide gels: detection and inhibition of enzyme activity in the gel.
    Nadano D; Yasuda T; Sawazaki K; Takeshita H; Kishi K
    Electrophoresis; 1996 Jan; 17(1):104-9. PubMed ID: 8907526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent nucleic acid probe in droplets for bacterial sorting (FNAP-sort) as a high-throughput screening method for environmental bacteria with various growth rates.
    Ota Y; Saito K; Takagi T; Matsukura S; Morita M; Tsuneda S; Noda N
    PLoS One; 2019; 14(4):e0214533. PubMed ID: 30995251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An insight into the ribonucleolytic and antiangiogenic activity of buffalo lactoferrin.
    Tripathy DR; Pandey NK; Dinda AK; Ghosh S; Singha Roy A; Dasgupta S
    J Biomol Struct Dyn; 2015; 33(1):184-95. PubMed ID: 24320703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Label-free, high-throughput, electrical detection of cells in droplets.
    Kemna EW; Segerink LI; Wolbers F; Vermes I; van den Berg A
    Analyst; 2013 Aug; 138(16):4585-92. PubMed ID: 23748871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of single tryptophan residues to the fluorescence and stability of ribonuclease Sa.
    Alston RW; Urbanikova L; Sevcik J; Lasagna M; Reinhart GD; Scholtz JM; Pace CN
    Biophys J; 2004 Dec; 87(6):4036-47. PubMed ID: 15377518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-Cell RNA Hydrolysis Assay: A Method for the Determination of the RNase Activity of Potential RNases.
    Seo Y; Jun HR; Lee J; Park H; Kim M; Lee Y; Kwon MH
    Mol Biotechnol; 2015 Jun; 57(6):506-12. PubMed ID: 25632893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ethidium bromide: a nucleic acid stain for tissue section.
    Franklin WA; Locker JD
    J Histochem Cytochem; 1981 Apr; 29(4):572-6. PubMed ID: 6166660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacing droplet microfluidics with matrix-assisted laser desorption/ionization mass spectrometry: label-free content analysis of single droplets.
    Küster SK; Fagerer SR; Verboket PE; Eyer K; Jefimovs K; Zenobi R; Dittrich PS
    Anal Chem; 2013 Feb; 85(3):1285-9. PubMed ID: 23289755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general ribonuclease assay using methylene blue.
    Greiner-Stoeffele T; Grunow M; Hahn U
    Anal Biochem; 1996 Aug; 240(1):24-8. PubMed ID: 8811875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence assay for the binding of ribonuclease A to the ribonuclease inhibitor protein.
    Abel RL; Haigis MC; Park C; Raines RT
    Anal Biochem; 2002 Jul; 306(1):100-7. PubMed ID: 12069420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining of actual activities of acid and alkaline ribonuclease in human serum and urine.
    Naskalski JW; Celiński A
    Mater Med Pol; 1991; 23(2):107-10. PubMed ID: 1842595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing Partial Inhibition of Ribonuclease A Activity by Curcumin through Fluorescence Spectroscopy and Theoretical Studies.
    Sahoo BK; Velavalapalli VM
    J Fluoresc; 2023 Oct; ():. PubMed ID: 37870732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput DNA droplet assays using picoliter reactor volumes.
    Srisa-Art M; deMello AJ; Edel JB
    Anal Chem; 2007 Sep; 79(17):6682-9. PubMed ID: 17676925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiogenin interacts with ribonuclease inhibitor regulating PI3K/AKT/mTOR signaling pathway in bladder cancer cells.
    Peng Y; Li L; Huang M; Duan C; Zhang L; Chen J
    Cell Signal; 2014 Dec; 26(12):2782-92. PubMed ID: 25193113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling liquid chromatography/mass spectrometry detection with microfluidic droplet array for label-free enzyme inhibition assay.
    Wang XL; Zhu Y; Fang Q
    Analyst; 2014 Jan; 139(1):191-7. PubMed ID: 24196165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.