These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 28604864)
1. From the Kohn-Sham band gap to the fundamental gap in solids. An integer electron approach. Baerends EJ Phys Chem Chem Phys; 2017 Jun; 19(24):15639-15656. PubMed ID: 28604864 [TBL] [Abstract][Full Text] [Related]
2. Density functional approximations for orbital energies and total energies of molecules and solids. Baerends EJ J Chem Phys; 2018 Aug; 149(5):054105. PubMed ID: 30089375 [TBL] [Abstract][Full Text] [Related]
3. The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies. Baerends EJ; Gritsenko OV; van Meer R Phys Chem Chem Phys; 2013 Oct; 15(39):16408-25. PubMed ID: 24002107 [TBL] [Abstract][Full Text] [Related]
4. Fundamental gaps with approximate density functionals: the derivative discontinuity revealed from ensemble considerations. Kraisler E; Kronik L J Chem Phys; 2014 May; 140(18):18A540. PubMed ID: 24832348 [TBL] [Abstract][Full Text] [Related]
5. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations. van Meer R; Gritsenko OV; Baerends EJ J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140 [TBL] [Abstract][Full Text] [Related]
6. Understanding band gaps of solids in generalized Kohn-Sham theory. Perdew JP; Yang W; Burke K; Yang Z; Gross EK; Scheffler M; Scuseria GE; Henderson TM; Zhang IY; Ruzsinszky A; Peng H; Sun J; Trushin E; Görling A Proc Natl Acad Sci U S A; 2017 Mar; 114(11):2801-2806. PubMed ID: 28265085 [TBL] [Abstract][Full Text] [Related]
7. Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals. Kronik L; Stein T; Refaely-Abramson S; Baer R J Chem Theory Comput; 2012 May; 8(5):1515-31. PubMed ID: 26593646 [TBL] [Abstract][Full Text] [Related]
8. Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed. Perdew JP; Ruzsinszky A; Constantin LA; Sun J; Csonka GI J Chem Theory Comput; 2009 Apr; 5(4):902-8. PubMed ID: 26609599 [TBL] [Abstract][Full Text] [Related]
9. A new generalized Kohn-Sham method for fundamental band-gaps in solids. Eisenberg HR; Baer R Phys Chem Chem Phys; 2009 Jun; 11(22):4674-80. PubMed ID: 19475189 [TBL] [Abstract][Full Text] [Related]
10. Restoration of the derivative discontinuity in Kohn-Sham density functional theory: an efficient scheme for energy gap correction. Chai JD; Chen PT Phys Rev Lett; 2013 Jan; 110(3):033002. PubMed ID: 23373919 [TBL] [Abstract][Full Text] [Related]
11. Derivative discontinuity, bandgap and lowest unoccupied molecular orbital in density functional theory. Yang W; Cohen AJ; Mori-Sánchez P J Chem Phys; 2012 May; 136(20):204111. PubMed ID: 22667544 [TBL] [Abstract][Full Text] [Related]
12. Koopmans-like approximation in the Kohn-Sham method and the impact of the frozen core approximation on the computation of the reactivity parameters of the density functional theory. Vargas R; Garza J; Cedillo A J Phys Chem A; 2005 Oct; 109(39):8880-92. PubMed ID: 16834292 [TBL] [Abstract][Full Text] [Related]
13. Connection between Hybrid Functionals and Importance of the Local Density Approximation. Mosquera MA; Borca CH; Ratner MA; Schatz GC J Phys Chem A; 2016 Mar; 120(9):1605-12. PubMed ID: 26901359 [TBL] [Abstract][Full Text] [Related]
14. The Electron Affinity as the Highest Occupied Anion Orbital Energy with a Sufficiently Accurate Approximation of the Exact Kohn-Sham Potential. Amati M; Stoia S; Baerends EJ J Chem Theory Comput; 2020 Jan; 16(1):443-452. PubMed ID: 31794657 [TBL] [Abstract][Full Text] [Related]
15. Orbital energies and negative electron affinities from density functional theory: Insight from the integer discontinuity. Teale AM; De Proft F; Tozer DJ J Chem Phys; 2008 Jul; 129(4):044110. PubMed ID: 18681637 [TBL] [Abstract][Full Text] [Related]
16. Approximating Quasiparticle and Excitation Energies from Ground State Generalized Kohn-Sham Calculations. Mei Y; Li C; Su NQ; Yang W J Phys Chem A; 2019 Jan; 123(3):666-673. PubMed ID: 30589546 [TBL] [Abstract][Full Text] [Related]
17. Comparison of DFT methods for molecular orbital eigenvalue calculations. Zhang G; Musgrave CB J Phys Chem A; 2007 Mar; 111(8):1554-61. PubMed ID: 17279730 [TBL] [Abstract][Full Text] [Related]
18. From Kohn-Sham to Many-Electron Energies via Step Structures in the Exchange-Correlation Potential. Kraisler E; Hodgson MJP; Gross EKU J Chem Theory Comput; 2021 Mar; 17(3):1390-1407. PubMed ID: 33595312 [TBL] [Abstract][Full Text] [Related]
19. Localized exchange-correlation potential from second-order self-energy for accurate Kohn-Sham energy gap. Fabiano E; Della Sala F J Chem Phys; 2007 Jun; 126(21):214102. PubMed ID: 17567185 [TBL] [Abstract][Full Text] [Related]
20. Density functionals from many-body perturbation theory: the band gap for semiconductors and insulators. Grüning M; Marini A; Rubio A J Chem Phys; 2006 Apr; 124(15):154108. PubMed ID: 16674219 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]