BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28604877)

  • 1. Understanding and improving aggregated gold nanoparticle/dsDNA interactions by molecular spectroscopy and deconvolution methods.
    Carnerero JM; Jimenez-Ruiz A; Grueso EM; Prado-Gotor R
    Phys Chem Chem Phys; 2017 Jun; 19(24):16113-16123. PubMed ID: 28604877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic-light-scattering-based sequence-specific recognition of double-stranded DNA with oligonucleotide-functionalized gold nanoparticles.
    Miao XM; Xiong C; Wang WW; Ling LS; Shuai XT
    Chemistry; 2011 Sep; 17(40):11230-6. PubMed ID: 21922555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of the adsorption of dsDNA on citrate-stabilized gold nanoparticles and a colorimetric and visual method for detecting the V600E point mutation of the BRAF gene.
    Liu Z; Hettihewa M; Shu Y; Zhou C; Wan Q; Liu L
    Mikrochim Acta; 2018 Mar; 185(4):240. PubMed ID: 29594675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thiol-specific and nonspecific interactions between DNA and gold nanoparticles.
    Cárdenas M; Barauskas J; Schillén K; Brennan JL; Brust M; Nylander T
    Langmuir; 2006 Mar; 22(7):3294-9. PubMed ID: 16548591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improved DNA force field for ssDNA interactions with gold nanoparticles.
    Jiang X; Gao J; Huynh T; Huai P; Fan C; Zhou R; Song B
    J Chem Phys; 2014 Jun; 140(23):234102. PubMed ID: 24952518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of mercury ions (II) based on non-cross-linking aggregation of double-stranded DNA modified gold nanoparticles by resonance Rayleigh scattering method.
    Gao ZF; Song WW; Luo HQ; Li NB
    Biosens Bioelectron; 2015 Mar; 65():360-5. PubMed ID: 25461182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive detection of miRNA by using hybridization chain reaction coupled with positively charged gold nanoparticles.
    Miao X; Ning X; Li Z; Cheng Z
    Sci Rep; 2016 Aug; 6():32358. PubMed ID: 27576601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A kinetic study of the interaction of DNA with gold nanoparticles: mechanistic aspects of the interaction.
    Prado-Gotor R; Grueso E
    Phys Chem Chem Phys; 2011 Jan; 13(4):1479-89. PubMed ID: 21132199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanoparticle-based colorimetric and "turn-on" fluorescent probe for mercury(II) ions in aqueous solution.
    Wang H; Wang Y; Jin J; Yang R
    Anal Chem; 2008 Dec; 80(23):9021-8. PubMed ID: 19551976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of mercury detection based on interaction of single-strand DNA and hybridized DNA with gold nanoparticles.
    Zuo X; Wu H; Toh J; Li SF
    Talanta; 2010 Oct; 82(5):1642-6. PubMed ID: 20875557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-Free Detection of Sequence-Specific DNA Based on Fluorescent Silver Nanoclusters-Assisted Surface Plasmon-Enhanced Energy Transfer.
    Ma JL; Yin BC; Le HN; Ye BC
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12856-63. PubMed ID: 26024337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A gold nanoparticle based fluorescent probe for simultaneous recognition of single-stranded DNA and double-stranded DNA.
    Ma H; Li Z; Xue N; Cheng Z; Miao X
    Mikrochim Acta; 2018 Jan; 185(2):93. PubMed ID: 29594738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrophotometric determination of cysteine with gold nanoparticles stabilized with single-stranded oligonucleotides.
    Wang Y; Wang J; Yang F; Yang X
    Anal Sci; 2010; 26(5):545-9. PubMed ID: 20467128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-catalytic growth of unmodified gold nanoparticles as conductive bridges mediated gap-electrical signal transduction for DNA hybridization detection.
    Zhang J; Nie H; Wu Z; Yang Z; Zhang L; Xu X; Huang S
    Anal Chem; 2014 Jan; 86(2):1178-85. PubMed ID: 24313362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-cell scanning transmission electron microscopy and fluorescence correlation spectroscopy of DNA-directed gold nanoparticle assemblies.
    Jungjohann KL; Wheeler DR; Polsky R; Brozik SM; Brozik JA; Rudolph AR
    Micron; 2019 Apr; 119():54-63. PubMed ID: 30660856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly sensitive sensor for Cu2+ with unmodified gold nanoparticles and DNAzyme by using the dynamic light scattering technique.
    Miao X; Ling L; Cheng D; Shuai X
    Analyst; 2012 Jul; 137(13):3064-9. PubMed ID: 22645734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanoparticle aggregation-based highly sensitive DNA detection using atomic force microscopy.
    Bui MP; Baek TJ; Seong GH
    Anal Bioanal Chem; 2007 Jul; 388(5-6):1185-90. PubMed ID: 17534606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic and microscopic analyses of rod-shaped gold nanoparticles interacting with single-stranded DNA oligonucleotides.
    Saber R; Shakoori Z; Sarkar S; Tavoosidana G; Kharrazi S; Gill P
    IET Nanobiotechnol; 2013 Jun; 7(2):42-9. PubMed ID: 24046904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly selective colorimetric detection of spermine in biosamples on basis of the non-crosslinking aggregation of ssDNA-capped gold nanoparticles.
    Liu ZD; Zhu HY; Zhao HX; Huang CZ
    Talanta; 2013 Mar; 106():255-60. PubMed ID: 23598125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA dangling-end-induced colloidal stabilization of gold nanoparticles for colorimetric single-nucleotide polymorphism genotyping.
    Akiyama Y; Shikagawa H; Kanayama N; Takarada T; Maeda M
    Chemistry; 2014 Dec; 20(52):17420-5. PubMed ID: 25349129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.