These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28604899)

  • 1. Antireflective coatings with enhanced adhesion strength.
    Khan SB; Wu H; Fei Z; Ning S; Zhang Z
    Nanoscale; 2017 Aug; 9(31):11047-11054. PubMed ID: 28604899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Al
    Khan SB; Wu H; Xie Z; Wang W; Zhang Z
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):36327-36337. PubMed ID: 28956908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embedding constructed refractive index graded antireflective coating with high abrasion resistance and environmental stability for polycarbonate glass.
    Zhang C; Zhao H; Su Y; Wang H; Shen J; Wang X
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):13-21. PubMed ID: 34626961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophobic surface modified HfO
    Khan SB; Zhang Z; Lee SL
    Nanotechnology; 2019 Oct; 30(40):40LT01. PubMed ID: 31247606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband omnidirectional antireflection coatings optimized by genetic algorithm.
    Poxson DJ; Schubert MF; Mont FW; Schubert EF; Kim JK
    Opt Lett; 2009 Mar; 34(6):728-30. PubMed ID: 19282913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grass-like Alumina with Low Refractive Index for Scalable, Broadband, Omnidirectional Antireflection Coatings on Glass Using Atomic Layer Deposition.
    Kauppinen C; Isakov K; Sopanen M
    ACS Appl Mater Interfaces; 2017 May; 9(17):15038-15043. PubMed ID: 28398715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double-Sided, Omnidirectional γ-AlOOH Hierarchical Nanostructures: Imparting Enhanced Antireflective Properties with Self-Cleaning Capacity for Optical Devices.
    Halan Joghee S; Uthandi KM; Singh N; Katti S; Kumar P; Kaur MP; Pullithadathil B
    Langmuir; 2021 Jun; 37(23):6953-6966. PubMed ID: 34060322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Durable Broadband and Omnidirectional Ultra-antireflective Surfaces.
    Li Z; Lin J; Liu Z; Feng S; Liu Y; Wang C; Liu Y; Yang S
    ACS Appl Mater Interfaces; 2018 Nov; 10(46):40180-40188. PubMed ID: 30378430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wide-Angle Broadband Antireflection Coatings Prepared by Atomic Layer Deposition.
    Pfeiffer K; Ghazaryan L; Schulz U; Szeghalmi A
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21887-21894. PubMed ID: 31083898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous anodic alumina with low refractive index for broadband graded-index antireflection coatings.
    Chen J; Wang B; Yang Y; Shi Y; Xu G; Cui P
    Appl Opt; 2012 Oct; 51(28):6839-43. PubMed ID: 23033100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow Rodlike MgF
    Bao L; Ji Z; Wang H; Chen R
    Langmuir; 2017 Jun; 33(25):6240-6247. PubMed ID: 28602095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitin Nanofibers Extracted from Crab Shells in Broadband Visible Antireflection Coatings with Controlling Layer-by-Layer Deposition and the Application for Durable Antifog Surfaces.
    Manabe K; Tanaka C; Moriyama Y; Tenjimbayashi M; Nakamura C; Tokura Y; Matsubayashi T; Kyung KH; Shiratori S
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31951-31958. PubMed ID: 27801561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-material zinc sulfide bi-layer antireflection coatings for GaAs solar cells.
    Leem JW; Jun DH; Heo J; Park WK; Park JH; Cho WJ; Kim DE; Yu JS
    Opt Express; 2013 Sep; 21 Suppl 5():A821-8. PubMed ID: 24104577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning.
    Ji S; Park J; Lim H
    Nanoscale; 2012 Aug; 4(15):4603-10. PubMed ID: 22706661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-layer fabrication of broad-band superhydrophobic antireflection coatings in near-infrared region.
    Zhang L; Li Y; Sun J; Shen J
    J Colloid Interface Sci; 2008 Mar; 319(1):302-8. PubMed ID: 18068180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Universal antireflection coatings for substrates for the visible spectral region.
    Dobrowolski JA; Sullivan BT
    Appl Opt; 1996 Sep; 35(25):4993-7. PubMed ID: 21102926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-angle broadband antireflection coatings based on boomerang-like alumina nanostructures in visible region.
    Omrani M; Malekmohammad M; Zabolian H
    Sci Rep; 2022 Jan; 12(1):904. PubMed ID: 35042946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of Carbon Nanotube Sponges to Have High Optical Antireflection and Mechanical Stability.
    Zhan H; Shi QQ; Wu G; Wang JN
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16762-16771. PubMed ID: 32216324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. All-Nanoparticle Monolayer Broadband Antireflective and Self-Cleaning Transparent Glass Coatings.
    Gruzd A; Tokarev A; Tokarev I; Kuksenkov D; Minko S
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6767-6777. PubMed ID: 33523621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement in broadband and quasi-omnidirectional antireflection of nanopillar arrays by ion milling.
    Huang Z; Hawkeye MM; Brett MJ
    Nanotechnology; 2012 Jul; 23(27):275703. PubMed ID: 22705498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.