These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 28604902)

  • 1. What if the number of nanotoxicity data is too small for developing predictive Nano-QSAR models? An alternative read-across based approach for filling data gaps.
    Gajewicz A
    Nanoscale; 2017 Jun; 9(24):8435-8448. PubMed ID: 28604902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational ecotoxicology: simultaneous prediction of ecotoxic effects of nanoparticles under different experimental conditions.
    Kleandrova VV; Luan F; González-Díaz H; Ruso JM; Melo A; Speck-Planche A; Cordeiro MN
    Environ Int; 2014 Dec; 73():288-94. PubMed ID: 25173945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel approach for efficient predictions properties of large pool of nanomaterials based on limited set of species: nano-read-across.
    Gajewicz A; Cronin MT; Rasulev B; Leszczynski J; Puzyn T
    Nanotechnology; 2015 Jan; 26(1):015701. PubMed ID: 25473798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling.
    Lubinski L; Urbaszek P; Gajewicz A; Cronin MT; Enoch SJ; Madden JC; Leszczynska D; Leszczynski J; Puzyn T
    SAR QSAR Environ Res; 2013; 24(12):995-1008. PubMed ID: 24313439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology.
    Puzyn T; Jeliazkova N; Sarimveis H; Marchese Robinson RL; Lobaskin V; Rallo R; Richarz AN; Gajewicz A; Papadopulos MG; Hastings J; Cronin MTD; Benfenati E; Fernández A
    Food Chem Toxicol; 2018 Feb; 112():478-494. PubMed ID: 28943385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-QSAR Model for Predicting Cell Viability of Human Embryonic Kidney Cells.
    Manganelli S; Benfenati E
    Methods Mol Biol; 2017; 1601():275-290. PubMed ID: 28470534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A data reusability assessment in the nanosafety domain based on the NSDRA framework followed by an exploratory quantitative structure activity relationships (QSAR) modeling targeting cellular viability.
    Furxhi I; Willighagen E; Evelo C; Costa A; Gardini D; Ammar A
    NanoImpact; 2023 Jul; 31():100475. PubMed ID: 37423508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential.
    Winkler DA; Mombelli E; Pietroiusti A; Tran L; Worth A; Fadeel B; McCall MJ
    Toxicology; 2013 Nov; 313(1):15-23. PubMed ID: 23165187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compilation of Data and Modelling of Nanoparticle Interactions and Toxicity in the NanoPUZZLES Project.
    Richarz AN; Avramopoulos A; Benfenati E; Gajewicz A; Golbamaki Bakhtyari N; Leonis G; Marchese Robinson RL; Papadopoulos MG; Cronin MT; Puzyn T
    Adv Exp Med Biol; 2017; 947():303-324. PubMed ID: 28168672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current Knowledge on the Use of Computational Toxicology in Hazard Assessment of Metallic Engineered Nanomaterials.
    Chen G; Peijnenburg W; Xiao Y; Vijver MG
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28704975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient predictions of cytotoxicity of TiO
    Banerjee A; Kar S; Pore S; Roy K
    Nanotoxicology; 2023 Feb; 17(1):78-93. PubMed ID: 36891579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive models in ecotoxicology: Bridging the gap between scientific progress and regulatory applicability-Remarks and research needs.
    Vighi M; Barsi A; Focks A; Grisoni F
    Integr Environ Assess Manag; 2019 May; 15(3):345-351. PubMed ID: 30821044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate and interpretable nanoSAR models from genetic programming-based decision tree construction approaches.
    Oksel C; Winkler DA; Ma CY; Wilkins T; Wang XZ
    Nanotoxicology; 2016 Sep; 10(7):1001-12. PubMed ID: 26956430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current Strategies in Assessment of Nanotoxicity: Alternatives to In Vivo Animal Testing.
    Huang HJ; Lee YH; Hsu YH; Liao CT; Lin YF; Chiu HW
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial augmented dataset for the enhancement of nano-QSARs models. A methodology based on topological projections.
    Furxhi I; Kalapus M; Costa A; Puzyn T
    Nanotoxicology; 2023; 17(6-7):529-544. PubMed ID: 37885250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach.
    Luan F; Kleandrova VV; González-Díaz H; Ruso JM; Melo A; Speck-Planche A; Cordeiro MN
    Nanoscale; 2014 Sep; 6(18):10623-30. PubMed ID: 25083742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of category approaches, read-across and (Q)SAR: general considerations.
    Patlewicz G; Ball N; Booth ED; Hulzebos E; Zvinavashe E; Hennes C
    Regul Toxicol Pharmacol; 2013 Oct; 67(1):1-12. PubMed ID: 23764304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSAR modeling of nanomaterials.
    Burello E; Worth AP
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2011; 3(3):298-306. PubMed ID: 21384562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.