These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 28604905)

  • 1. Nature of peptide wrapping onto metal nanoparticle catalysts and driving forces for size control.
    Ramezani-Dakhel H; Bedford NM; Woehl TJ; Knecht MR; Naik RR; Heinz H
    Nanoscale; 2017 Jun; 9(24):8401-8409. PubMed ID: 28604905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity.
    Campbell CT
    Acc Chem Res; 2013 Aug; 46(8):1712-9. PubMed ID: 23607711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability, surface features, and atom leaching of palladium nanoparticles: toward prediction of catalytic functionality.
    Ramezani-Dakhel H; Mirau PA; Naik RR; Knecht MR; Heinz H
    Phys Chem Chem Phys; 2013 Apr; 15(15):5488-92. PubMed ID: 23474536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications.
    Zhang H; Jin M; Xiong Y; Lim B; Xia Y
    Acc Chem Res; 2013 Aug; 46(8):1783-94. PubMed ID: 23163781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Displacement of hexanol by the hexanoic acid overoxidation product in alcohol oxidation on a model supported palladium nanoparticle catalyst.
    Buchbinder AM; Ray NA; Lu J; Van Duyne RP; Stair PC; Weitz E; Geiger FM
    J Am Chem Soc; 2011 Nov; 133(44):17816-23. PubMed ID: 21919461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the shape of nanostructured metal surfaces on adsorption of single peptide molecules in aqueous solution.
    Feng J; Slocik JM; Sarikaya M; Naik RR; Farmer BL; Heinz H
    Small; 2012 Apr; 8(7):1049-59. PubMed ID: 22323430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?
    Hansen TW; Delariva AT; Challa SR; Datye AK
    Acc Chem Res; 2013 Aug; 46(8):1720-30. PubMed ID: 23634641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model Approach in Heterogeneous Catalysis: Kinetics and Thermodynamics of Surface Reactions.
    Schauermann S; Freund HJ
    Acc Chem Res; 2015 Oct; 48(10):2775-82. PubMed ID: 26366783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-Mediated Interactions between Nanoscale Surfaces Depend Sensitively and Nonlinearly on Temperature, Facet Dimensions, and Ligand Coverage.
    Widmer-Cooper A; Geissler PL
    ACS Nano; 2016 Feb; 10(2):1877-87. PubMed ID: 26756464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption.
    Patwardhan SV; Emami FS; Berry RJ; Jones SE; Naik RR; Deschaume O; Heinz H; Perry CC
    J Am Chem Soc; 2012 Apr; 134(14):6244-56. PubMed ID: 22435500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions at the silica-peptide interface: the influence of particle size and surface functionality.
    Puddu V; Perry CC
    Langmuir; 2014 Jan; 30(1):227-33. PubMed ID: 24328428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determining peptide sequence effects that control the size, structure, and function of nanoparticles.
    Coppage R; Slocik JM; Briggs BD; Frenkel AI; Naik RR; Knecht MR
    ACS Nano; 2012 Feb; 6(2):1625-36. PubMed ID: 22276921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative and Atomic-Scale View of CO-Induced Pt Nanoparticle Surface Reconstruction at Saturation Coverage via DFT Calculations Coupled with in Situ TEM and IR.
    Avanesian T; Dai S; Kale MJ; Graham GW; Pan X; Christopher P
    J Am Chem Soc; 2017 Mar; 139(12):4551-4558. PubMed ID: 28263592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selectivity of Glycine for Facets on Gold Nanoparticles.
    Shao Q; Hall CK
    J Phys Chem B; 2018 Apr; 122(13):3491-3499. PubMed ID: 29200301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis.
    Pal J; Pal T
    Nanoscale; 2015 Sep; 7(34):14159-90. PubMed ID: 26255749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scanning the potential energy surface for synthesis of dendrimer-wrapped gold clusters: design rules for true single-molecule nanostructures.
    Thompson D; Hermes JP; Quinn AJ; Mayor M
    ACS Nano; 2012 Apr; 6(4):3007-17. PubMed ID: 22432786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anchored metal nanoparticles: effects of support and size on their energy, sintering resistance and reactivity.
    Campbell CT; Sellers JR
    Faraday Discuss; 2013; 162():9-30. PubMed ID: 24015573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability.
    Narayanan R; El-Sayed MA
    J Phys Chem B; 2005 Jul; 109(26):12663-76. PubMed ID: 16852568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.