These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 28604905)

  • 21. Nature of molecular interactions of peptides with gold, palladium, and Pd-Au bimetal surfaces in aqueous solution.
    Heinz H; Farmer BL; Pandey RB; Slocik JM; Patnaik SS; Pachter R; Naik RR
    J Am Chem Soc; 2009 Jul; 131(28):9704-14. PubMed ID: 19552440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction forces between colloidal particles in a solution of like-charged, adsorbing nanoparticles.
    McKee CT; Walz JY
    J Colloid Interface Sci; 2012 Jan; 365(1):72-80. PubMed ID: 21983089
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The origin of shape sensitivity in palladium-catalyzed Suzuki-Miyaura cross coupling reactions.
    Collins G; Schmidt M; O'Dwyer C; Holmes JD; McGlacken GP
    Angew Chem Int Ed Engl; 2014 Apr; 53(16):4142-5. PubMed ID: 24615926
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shape-controlled nanostructures in heterogeneous catalysis.
    Zaera F
    ChemSusChem; 2013 Oct; 6(10):1797-820. PubMed ID: 24014476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoimaging of Facet-Dependent Adsorption, Diffusion, and Reactivity of Surface Ligands on Au Nanocrystals.
    Rikanati L; Shema H; Ben-Tzvi T; Gross E
    Nano Lett; 2023 Jun; 23(12):5437-5444. PubMed ID: 37327381
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts.
    Somorjai GA; Aliaga C
    Langmuir; 2010 Nov; 26(21):16190-203. PubMed ID: 20860409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights on the facet specific adsorption of amino acids and peptides toward platinum.
    Ramakrishnan SK; Martin M; Cloitre T; Firlej L; Cuisinier FJ; Gergely C
    J Chem Inf Model; 2013 Dec; 53(12):3273-9. PubMed ID: 24289530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Friction and adhesion control between adsorbed layers of polyelectrolyte brush-grafted nanoparticles via pH-triggered bridging interactions.
    Riley JK; Matyjaszewski K; Tilton RD
    J Colloid Interface Sci; 2018 Sep; 526():114-123. PubMed ID: 29723792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering.
    Payton JL; Morton SM; Moore JE; Jensen L
    Acc Chem Res; 2014 Jan; 47(1):88-99. PubMed ID: 23965411
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption of Catalytic Nanoparticles onto Polymer Substrates for Controlled Deposition of Microcapsule Metal Shells.
    Hitchcock JP; Tasker AL; Stark K; Leeson A; Baxter EA; Biggs S; Cayre OJ
    Langmuir; 2018 Jan; 34(4):1473-1480. PubMed ID: 29227687
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Ligand Shell as an Energy Barrier in Surface Reactions on Transition Metal Nanoparticles.
    Smith JG; Jain PK
    J Am Chem Soc; 2016 Jun; 138(21):6765-73. PubMed ID: 27152595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metallic nanocatalysis: an accelerating seamless integration with nanotechnology.
    Dai Y; Wang Y; Liu B; Yang Y
    Small; 2015 Jan; 11(3):268-89. PubMed ID: 25363149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures.
    Zheng G; Chen Z; Sentosun K; Pérez-Juste I; Bals S; Liz-Marzán LM; Pastoriza-Santos I; Pérez-Juste J; Hong M
    Nanoscale; 2017 Nov; 9(43):16645-16651. PubMed ID: 28825072
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Gravity on Colloidal Deposition Studied by Atomic Force Microscopy.
    Dokou E; Barteau MA; Wagner NJ; Lenhoff AM
    J Colloid Interface Sci; 2001 Aug; 240(1):9-16. PubMed ID: 11446780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticles for heterogeneous catalysis: new mechanistic insights.
    Schauermann S; Nilius N; Shaikhutdinov S; Freund HJ
    Acc Chem Res; 2013 Aug; 46(8):1673-81. PubMed ID: 23252628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elucidation of peptide-directed palladium surface structure for biologically tunable nanocatalysts.
    Bedford NM; Ramezani-Dakhel H; Slocik JM; Briggs BD; Ren Y; Frenkel AI; Petkov V; Heinz H; Naik RR; Knecht MR
    ACS Nano; 2015 May; 9(5):5082-92. PubMed ID: 25905675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand-metal binding role in controlling the nucleation and growth kinetics.
    Mozaffari S; Li W; Thompson C; Ivanov S; Seifert S; Lee B; Kovarik L; Karim AM
    Nanoscale; 2017 Sep; 9(36):13772-13785. PubMed ID: 28885633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures.
    Khomutov GB; Koksharov YA
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):119-47. PubMed ID: 16887093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.