These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 28605113)
1. Muscle carnitine availability plays a central role in regulating fuel metabolism in the rodent. Porter C; Constantin-Teodosiu D; Constantin D; Leighton B; Poucher SM; Greenhaff PL J Physiol; 2017 Sep; 595(17):5765-5780. PubMed ID: 28605113 [TBL] [Abstract][Full Text] [Related]
2. Contractile function and energy metabolism of skeletal muscle in rats with secondary carnitine deficiency. Roberts PA; Bouitbir J; Bonifacio A; Singh F; Kaufmann P; Urwyler A; Krähenbühl S Am J Physiol Endocrinol Metab; 2015 Aug; 309(3):E265-74. PubMed ID: 26037247 [TBL] [Abstract][Full Text] [Related]
4. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199 [TBL] [Abstract][Full Text] [Related]
5. Hyperpolarized magnetic resonance shows that the anti-ischemic drug meldonium leads to increased flux through pyruvate dehydrogenase in vivo resulting in improved post-ischemic function in the diabetic heart. Savic D; Ball V; Holzner L; Hauton D; Timm KN; Curtis MK; Heather LC; Tyler DJ NMR Biomed; 2021 Apr; 34(4):e4471. PubMed ID: 33458907 [TBL] [Abstract][Full Text] [Related]
6. Pharmacological effects of meldonium: Biochemical mechanisms and biomarkers of cardiometabolic activity. Dambrova M; Makrecka-Kuka M; Vilskersts R; Makarova E; Kuka J; Liepinsh E Pharmacol Res; 2016 Nov; 113(Pt B):771-780. PubMed ID: 26850121 [TBL] [Abstract][Full Text] [Related]
7. New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle. Stephens FB; Constantin-Teodosiu D; Greenhaff PL J Physiol; 2007 Jun; 581(Pt 2):431-44. PubMed ID: 17331998 [TBL] [Abstract][Full Text] [Related]
8. Human adaptation to immobilization: Novel insights of impacts on glucose disposal and fuel utilization. Shur NF; Simpson EJ; Crossland H; Chivaka PK; Constantin D; Cordon SM; Constantin-Teodosiu D; Stephens FB; Lobo DN; Szewczyk N; Narici M; Prats C; Macdonald IA; Greenhaff PL J Cachexia Sarcopenia Muscle; 2022 Dec; 13(6):2999-3013. PubMed ID: 36058634 [TBL] [Abstract][Full Text] [Related]
13. Consumption of carbohydrate solutions enhances energy intake without increased body weight and impaired insulin action in rat skeletal muscles. Ruzzin J; Lai YC; Jensen J Diabetes Metab; 2005 Apr; 31(2):178-88. PubMed ID: 15959424 [TBL] [Abstract][Full Text] [Related]
15. Effect of carnitine, acetyl-, and propionylcarnitine supplementation on the body carnitine pool, skeletal muscle composition, and physical performance in mice. Morand R; Bouitbir J; Felser A; Hench J; Handschin C; Frank S; Krähenbühl S Eur J Nutr; 2014 Sep; 53(6):1313-25. PubMed ID: 24337254 [TBL] [Abstract][Full Text] [Related]
16. Increased fatty acid oxidation and mitochondrial proliferation in liver are associated with increased plasma kynurenine metabolites and nicotinamide levels in normolipidemic and carnitine-depleted rats. Lindquist C; Bjørndal B; Lund A; Slettom G; Skorve J; Nygård O; Svardal A; Berge RK Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158543. PubMed ID: 31676443 [TBL] [Abstract][Full Text] [Related]
17. Malonyl-CoA and carnitine in regulation of fat oxidation in human skeletal muscle during exercise. Roepstorff C; Halberg N; Hillig T; Saha AK; Ruderman NB; Wojtaszewski JF; Richter EA; Kiens B Am J Physiol Endocrinol Metab; 2005 Jan; 288(1):E133-42. PubMed ID: 15383373 [TBL] [Abstract][Full Text] [Related]
18. Pharmacological doses of niacin stimulate the expression of genes involved in carnitine uptake and biosynthesis and improve the carnitine status of obese Zucker rats. Couturier A; Ringseis R; Most E; Eder K BMC Pharmacol Toxicol; 2014 Jul; 15():37. PubMed ID: 25012467 [TBL] [Abstract][Full Text] [Related]
19. The Discovery of Highly Potent THP Derivatives as OCTN2 Inhibitors: From Structure-Based Virtual Screening to In Vivo Biological Activity. Di Cristo F; Calarco A; Digilio FA; Sinicropi MS; Rosano C; Galderisi U; Melone MAB; Saturnino C; Peluso G Int J Mol Sci; 2020 Oct; 21(19):. PubMed ID: 33050117 [TBL] [Abstract][Full Text] [Related]
20. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo. Chien D; Dean D; Saha AK; Flatt JP; Ruderman NB Am J Physiol Endocrinol Metab; 2000 Aug; 279(2):E259-65. PubMed ID: 10913024 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]