These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28605126)

  • 1. Tin Sulfide-Based Nanohybrid for High-Performance Anode of Sodium-Ion Batteries.
    Choi J; Kim NR; Lim K; Ku K; Yoon HJ; Kang JG; Kang K; Braun PV; Jin HJ; Yun YS
    Small; 2017 Aug; 13(30):. PubMed ID: 28605126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High Voltage Magnesium-ion Battery Enabled by Nanocluster Mg
    Tan YH; Yao WT; Zhang T; Ma T; Lu LL; Zhou F; Yao HB; Yu SH
    ACS Nano; 2018 Jun; 12(6):5856-5865. PubMed ID: 29701958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rechargeable Room-Temperature Na-CO2 Batteries.
    Hu X; Sun J; Li Z; Zhao Q; Chen C; Chen J
    Angew Chem Int Ed Engl; 2016 May; 55(22):6482-6. PubMed ID: 27089434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible conversion-alloying of Sb2O3 as a high-capacity, high-rate, and durable anode for sodium ion batteries.
    Hu M; Jiang Y; Sun W; Wang H; Jin C; Yan M
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19449-55. PubMed ID: 25329758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sodium-ion battery based on an electrochemically converted NaFePO4 cathode and nanostructured tin-carbon anode.
    Hasa I; Hassoun J; Sun YK; Scrosati B
    Chemphyschem; 2014 Jul; 15(10):2152-5. PubMed ID: 24737749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TiS
    Tao H; Zhou M; Wang R; Wang K; Cheng S; Jiang K
    Adv Sci (Weinh); 2018 Nov; 5(11):1801021. PubMed ID: 30479930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sodium modified molybdenum sulfide via molten salt electrolysis as an anode material for high performance sodium-ion batteries.
    Wang S; Tu J; Yuan Y; Ma R; Jiao S
    Phys Chem Chem Phys; 2016 Jan; 18(4):3204-13. PubMed ID: 26744041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Encapsulated Tin Oxide Nanocomposites: An Efficient Anode for High Performance Sodium-Ion Batteries.
    Kalubarme RS; Lee JY; Park CJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17226-37. PubMed ID: 26186401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An advanced MoS2 /carbon anode for high-performance sodium-ion batteries.
    Wang J; Luo C; Gao T; Langrock A; Mignerey AC; Wang C
    Small; 2015 Jan; 11(4):473-81. PubMed ID: 25256131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New CuO-Fe
    Di Lecce D; Verrelli R; Campanella D; Marangon V; Hassoun J
    ChemSusChem; 2017 Apr; 10(7):1607-1615. PubMed ID: 28074612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance.
    Li Z; Ding J; Mitlin D
    Acc Chem Res; 2015 Jun; 48(6):1657-65. PubMed ID: 26046961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorinated Ether Based Electrolyte Enabling Sodium-Metal Batteries with Exceptional Cycling Stability.
    Yi Q; Lu Y; Sun X; Zhang H; Yu H; Sun C
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46965-46972. PubMed ID: 31742374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gassing in Sn-Anode Sodium-Ion Batteries and Its Remedy by Metallurgically Prealloying Na.
    Liu W; Chen X; Zhang C; Xu H; Sun X; Zheng Y; Yu Y; Li S; Huang Y; Li J
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23207-23212. PubMed ID: 31140773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CuV
    Krengel M; Hansen AL; Kaus M; Indris S; Wolff N; Kienle L; Westfal D; Bensch W
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21283-21291. PubMed ID: 28594544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2D Electrides as Promising Anode Materials for Na-Ion Batteries from First-Principles Study.
    Hu J; Xu B; Yang SA; Guan S; Ouyang C; Yao Y
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24016-22. PubMed ID: 26461467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melt-Spun Fe-Sb Intermetallic Alloy Anode for Performance Enhanced Sodium-Ion Batteries.
    Edison E; Sreejith S; Madhavi S
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39399-39406. PubMed ID: 29090906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TiP
    Wen Y; Chen L; Pang Y; Guo Z; Bin D; Wang YG; Wang C; Xia Y
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8075-8082. PubMed ID: 28212003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Scalable Strategy To Develop Advanced Anode for Sodium-Ion Batteries: Commercial Fe
    Hou BH; Wang YY; Guo JZ; Zhang Y; Ning QL; Yang Y; Li WH; Zhang JP; Wang XL; Wu XL
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3581-3589. PubMed ID: 29303243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
    Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C
    ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.