These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 28605191)

  • 41. The effect of composition and thermodynamics on the surface morphology of durable superhydrophobic polymer coatings.
    Nahum T; Dodiuk H; Kenig S; Panwar A; Barry C; Mead J
    Nanotechnol Sci Appl; 2017; 10():53-68. PubMed ID: 28243071
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multifunctional superamphiphobic TiO2 nanostructure surfaces with facile wettability and adhesion engineering.
    Huang JY; Lai YK; Pan F; Yang L; Wang H; Zhang KQ; Fuchs H; Chi LF
    Small; 2014 Dec; 10(23):4865-73. PubMed ID: 25070619
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bioinspired Interfaces with Superwettability: From Materials to Chemistry.
    Su B; Tian Y; Jiang L
    J Am Chem Soc; 2016 Feb; 138(6):1727-48. PubMed ID: 26652501
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deposition and Adhesion of Polydopamine on the Surfaces of Varying Wettability.
    Zhang C; Gong L; Xiang L; Du Y; Hu W; Zeng H; Xu ZK
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30943-30950. PubMed ID: 28832107
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-Cost and Scaled-Up Production of Fluorine-Free, Substrate-Independent, Large-Area Superhydrophobic Coatings Based on Hydroxyapatite Nanowire Bundles.
    Chen FF; Yang ZY; Zhu YJ; Xiong ZC; Dong LY; Lu BQ; Wu J; Yang RL
    Chemistry; 2018 Jan; 24(2):416-424. PubMed ID: 29072343
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomimetic superhydrophobic surfaces by combining mussel-inspired adhesion with lotus-inspired coating.
    Xue CH; Ji XQ; Zhang J; Ma JZ; Jia ST
    Nanotechnology; 2015 Aug; 26(33):335602. PubMed ID: 26222622
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Non-Fluorinated, Superhydrophobic Binder-Filler Coatings on Smooth Surfaces: Controlled Phase Separation of Particles to Enhance Mechanical Durability.
    Li C; Boban M; Beebe JM; Bhagwagar DE; Liu J; Tuteja A
    Langmuir; 2021 Mar; 37(10):3104-3112. PubMed ID: 33667094
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dopamine/Silica Nanoparticle Assembled, Microscale Porous Structure for Versatile Superamphiphobic Coating.
    Li F; Du M; Zheng Q
    ACS Nano; 2016 Feb; 10(2):2910-21. PubMed ID: 26828414
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reed Leaf-Inspired Graphene Films with Anisotropic Superhydrophobicity.
    Jiang HB; Liu YQ; Zhang YL; Liu Y; Fu XY; Han DD; Song YY; Ren L; Sun HB
    ACS Appl Mater Interfaces; 2018 May; 10(21):18416-18425. PubMed ID: 29722522
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transparent surface with reversibly switchable wettability between superhydrophobicity and superhydrophilicity.
    Hua Z; Yang J; Wang T; Liu G; Zhang G
    Langmuir; 2013 Aug; 29(33):10307-12. PubMed ID: 23915149
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biomimetic Water-Collecting Fabric with Light-Induced Superhydrophilic Bumps.
    Wang Y; Wang X; Lai C; Hu H; Kong Y; Fei B; Xin JH
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):2950-60. PubMed ID: 26652924
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Highly transparent and durable superhydrophobic hybrid nanoporous coatings fabricated from polysiloxane.
    Wang D; Zhang Z; Li Y; Xu C
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10014-21. PubMed ID: 24955659
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A strategy of fast reversible wettability changes of WO3 surfaces between superhydrophilicity and superhydrophobicity.
    Gu C; Zhang J; Tu J
    J Colloid Interface Sci; 2010 Dec; 352(2):573-9. PubMed ID: 20851408
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Scalable Preparation of Superamphiphobic Coatings with Ultralow Sliding Angles and High Liquid Impact Resistance.
    Dong S; Li Y; Tian N; Li B; Yang Y; Li L; Zhang J
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):41878-41882. PubMed ID: 30475584
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The role of bio-inspired hierarchical structures in wetting.
    Grewal HS; Cho IJ; Yoon ES
    Bioinspir Biomim; 2015 Apr; 10(2):026009. PubMed ID: 25856043
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bell-shaped superhydrophilic-superhydrophobic-superhydrophilic double transformation on a pH-responsive smart surface.
    Cheng M; Liu Q; Ju G; Zhang Y; Jiang L; Shi F
    Adv Mater; 2014 Jan; 26(2):306-10. PubMed ID: 24123523
    [TBL] [Abstract][Full Text] [Related]  

  • 58. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Robust Superhydrophobic Graphene-Based Composite Coatings with Self-Cleaning and Corrosion Barrier Properties.
    Nine MJ; Cole MA; Johnson L; Tran DN; Losic D
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28482-93. PubMed ID: 26632960
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Facile fabrication of a superamphiphobic surface on the copper substrate.
    Zhu X; Zhang Z; Xu X; Men X; Yang J; Zhou X; Xue Q
    J Colloid Interface Sci; 2012 Feb; 367(1):443-9. PubMed ID: 22074690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.