These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28605581)

  • 1. Optically Transparent Thin-Film Electrode Chip for Spectroelectrochemical Sensing.
    Branch SD; Lines AM; Lynch J; Bello JM; Heineman WR; Bryan SA
    Anal Chem; 2017 Jul; 89(14):7324-7332. PubMed ID: 28605581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically transparent diamond electrode for use in ir transmission spectroelectrochemical measurements.
    Dai Y; Proshlyakov DA; Zak JK; Swain GM
    Anal Chem; 2007 Oct; 79(19):7526-33. PubMed ID: 17784734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence spectroelectrochemical sensor for 1-hydroxypyrene.
    Pinyayev TS; Seliskar CJ; Heineman WR
    Anal Chem; 2010 Dec; 82(23):9743-8. PubMed ID: 21053915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical and electrochemical properties of optically transparent, boron-doped diamond thin films deposited on quartz.
    Stotter J; Zak J; Behler Z; Show Y; Swain GM
    Anal Chem; 2002 Dec; 74(23):5924-30. PubMed ID: 12498185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optically transparent carbon nanotube film electrode for thin layer spectroelectrochemistry.
    Wang T; Zhao D; Alvarez N; Shanov VN; Heineman WR
    Anal Chem; 2015 Oct; 87(19):9687-95. PubMed ID: 26291731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ruthenium Complexes with Strongly Electron-Donating Terpyridine Ligands: Effect of the Working Electrode on Electrochemical and Spectroelectrochemical Properties.
    Klein J; Stuckmann A; Sobottka S; Suntrup L; van der Meer M; Hommes P; Reissig HU; Sarkar B
    Chemistry; 2017 Sep; 23(50):12314-12325. PubMed ID: 28504454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroactive planar waveguide studies of Ru(bpy)3(2+) intercalated in a thin clay film: I. Transport and electrochemical phenomena.
    Fitch A; Agyeman A; Wagdy A; Terranova Z
    Langmuir; 2011 Jan; 27(1):452-60. PubMed ID: 21121624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 16. Sensing by fluorescence.
    Kaval N; Seliskar CJ; Heineman WR
    Anal Chem; 2003 Nov; 75(22):6334-40. PubMed ID: 14616018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 9. Incorporation of planar waveguide technology.
    Ross SE; Seliskar CJ; Heineman WR
    Anal Chem; 2000 Nov; 72(22):5549-55. PubMed ID: 11101230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon black nanoparticles film electrode prepared by using substrate-induced deposition approach.
    Svegl IG; Bele M; Ogorevc B
    Anal Chim Acta; 2008 Nov; 628(2):173-80. PubMed ID: 18929005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 13. Detection of aqueous iron by in situ complexation with 2,2'-bipyridine.
    Richardson JN; Dyer AL; Stegemiller ML; Zudans I; Seliskar CJ; Heineman WR
    Anal Chem; 2002 Jul; 74(14):3330-5. PubMed ID: 12139036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroelectrochemical Properties of Ultra-Thin Indium Tin Oxide Films under Electric Potential Modulation.
    Han X; Mendes SB
    Thin Solid Films; 2016 Mar; 603():230-237. PubMed ID: 26973359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 21. Selective chemical sensing using sulfonated polystyrene-block-poly(ethylene-ran-butylene)block-polystyrene thin films.
    Andria SE; Seliskar CJ; Heineman WR
    Anal Chem; 2009 Dec; 81(23):9599-606. PubMed ID: 19947662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel soft chemical method for optically transparent Ru(bpy)3-K4Nb6O17 thin film.
    Tong Z; Takagi S; Tachibana H; Takagi K; Inoue H
    J Phys Chem B; 2005 Nov; 109(46):21612-7. PubMed ID: 16853806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Multiselective Spectroelectrochemical Fiber-Optic Sensor: Sensing with an Optically Transparent Electrode.
    Okazaki T; Shiokawa E; Orii T; Yamamoto T; Hata N; Taguchi A; Sugawara K; Kuramitz H
    Anal Chem; 2018 Feb; 90(4):2440-2445. PubMed ID: 29364653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A solid-state thin-film Ag/AgCl reference electrode coated with graphene oxide and its use in a pH sensor.
    Kim TY; Hong SA; Yang S
    Sensors (Basel); 2015 Mar; 15(3):6469-82. PubMed ID: 25789490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thin layer spectroelectrochemical (RVC-OTTLE) studies of pertechnetate reduction in acidic media.
    Chotkowski M; Czerwiński A
    J Radioanal Nucl Chem; 2014; 300(1):229-234. PubMed ID: 26224968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a novel electrochemical cell for slab optical waveguide spectroscopy for in situ observation of methylene blue and anions on an electrode/electrolyte interface.
    Takahashi K; Koitabashi M; Kusu F
    Talanta; 2005 Mar; 65(5):1120-5. PubMed ID: 18969921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organosilane-functionalization of nanostructured indium tin oxide films.
    Pruna R; Palacio F; Martínez M; Blázquez O; Hernández S; Garrido B; López M
    Interface Focus; 2016 Dec; 6(6):20160056. PubMed ID: 27920895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode.
    Yang XQ; Guo LH
    Anal Chim Acta; 2009 Jan; 632(1):15-20. PubMed ID: 19100877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.