These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 28605844)

  • 1. Combination of aquatic species and safeners improves the remediation of copper polluted water.
    Panfili I; Bartucca ML; Ballerini E; Del Buono D
    Sci Total Environ; 2017 Dec; 601-602():1263-1270. PubMed ID: 28605844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The treatment of duckweed with a plant biostimulant or a safener improves the plant capacity to clean water polluted by terbuthylazine.
    Panfili I; Bartucca ML; Del Buono D
    Sci Total Environ; 2019 Jan; 646():832-840. PubMed ID: 30064109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor).
    Hou W; Chen X; Song G; Wang Q; Chi Chang C
    Plant Physiol Biochem; 2007 Jan; 45(1):62-9. PubMed ID: 17300947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short and long-term phytoremediation capacity of aquatic plants in Cu-polluted environments.
    Enochs B; Meindl G; Shidemantle G; Wuerthner V; Akerele D; Bartholomew A; Bulgrien B; Davis A; Hoyt K; Kung L; Molina M; Miller E; Winship A; Zhang Y; Graney J; Collins D; Hua J
    Heliyon; 2023 Jan; 9(1):e12805. PubMed ID: 36685386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of copper by the aquatic macrophyte Salvinia biloba Raddi (Salviniaceae).
    Freitas F; Lunardi S; Souza LB; von der Osten JSC; Arruda R; Andrade RLT; Battirola LD
    Braz J Biol; 2018 Feb; 78(1):133-139. PubMed ID: 28699967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.
    Li J; Yu H; Luan Y
    Int J Environ Res Public Health; 2015 Nov; 12(12):14958-73. PubMed ID: 26703632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation and detoxification of xenobiotics in plants: herbicide-safeners as a tool to improve plant efficiency in the remediation of polluted environments. A mini-review.
    Del Buono D; Terzano R; Panfili I; Bartucca ML
    Int J Phytoremediation; 2020; 22(8):789-803. PubMed ID: 31960714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrate removal from polluted water by using a vegetated floating system.
    Bartucca ML; Mimmo T; Cesco S; Del Buono D
    Sci Total Environ; 2016 Jan; 542(Pt A):803-8. PubMed ID: 26562338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecophysiological tolerance of duckweeds exposed to copper.
    Kanoun-Boulé M; Vicente JA; Nabais C; Prasad MN; Freitas H
    Aquat Toxicol; 2009 Jan; 91(1):1-9. PubMed ID: 19027182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of Cu, Cr and Pb mixtures by Lemna minor.
    Uçüncü E; Tunca E; Fikirdeşici S; Ozkan AD; Altindağ A
    Bull Environ Contam Toxicol; 2013 Nov; 91(5):600-4. PubMed ID: 24052144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle.
    Xue PY; Li GX; Liu WJ; Yan CZ
    Chemosphere; 2010 Nov; 81(9):1098-103. PubMed ID: 20934737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide.
    Obermeier M; Schröder CA; Helmreich B; Schröder P
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18495-507. PubMed ID: 26286797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquatic arsenic: phytoremediation using floating macrophytes.
    Rahman MA; Hasegawa H
    Chemosphere; 2011 Apr; 83(5):633-46. PubMed ID: 21435676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced phytoextraction of chromium by the aquatic macrophyte Potamogeton pusillus in presence of copper.
    Monferrán MV; Pignata ML; Wunderlin DA
    Environ Pollut; 2012 Feb; 161():15-22. PubMed ID: 22230062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper phytoextraction by Salvinia cucullata: biochemical and morphological study.
    Das S; Goswami S
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1363-1371. PubMed ID: 27778270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity, accumulation, and removal of heavy metals by three aquatic macrophytes.
    Basile A; Sorbo S; Conte B; Cobianchi RC; Trinchella F; Capasso C; Carginale V
    Int J Phytoremediation; 2012 Apr; 14(4):374-87. PubMed ID: 22567718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation Potential of Duckweed (Lemna minor L.) On Steel Wastewater.
    Saha P; Banerjee A; Sarkar S
    Int J Phytoremediation; 2015; 17(1-6):589-96. PubMed ID: 25192438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.
    Lakra KC; Lal B; Banerjee TK
    Int J Phytoremediation; 2017 Jun; 19(6):530-536. PubMed ID: 27936868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth response of the duckweed Lemna gibba L. to copper and nickel phytoaccumulation.
    Khellaf N; Zerdaoui M
    Ecotoxicology; 2010 Nov; 19(8):1363-8. PubMed ID: 20680456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.