These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
492 related articles for article (PubMed ID: 28606044)
1. The Formation Mechanism of Hydrogels. Lu L; Yuan S; Wang J; Shen Y; Deng S; Xie L; Yang Q Curr Stem Cell Res Ther; 2018; 13(7):490-496. PubMed ID: 28606044 [TBL] [Abstract][Full Text] [Related]
2. Dual-Crosslink Physical Hydrogels with High Toughness Based on Synergistic Hydrogen Bonding and Hydrophobic Interactions. Chang X; Geng Y; Cao H; Zhou J; Tian Y; Shan G; Bao Y; Wu ZL; Pan P Macromol Rapid Commun; 2018 Jul; 39(14):e1700806. PubMed ID: 29383780 [TBL] [Abstract][Full Text] [Related]
3. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. Chen SC; Wu YC; Mi FL; Lin YH; Yu LC; Sung HW J Control Release; 2004 Apr; 96(2):285-300. PubMed ID: 15081219 [TBL] [Abstract][Full Text] [Related]
4. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition. Nam K; Watanabe J; Ishihara K Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127 [TBL] [Abstract][Full Text] [Related]
5. Inflammation targeted chitosan-based hydrogel for controlled release of diclofenac sodium. Gull N; Khan SM; Butt OM; Islam A; Shah A; Jabeen S; Khan SU; Khan A; Khan RU; Butt MTZ Int J Biol Macromol; 2020 Nov; 162():175-187. PubMed ID: 32562726 [TBL] [Abstract][Full Text] [Related]
6. Integrated Functional High-Strength Hydrogels with Metal-Coordination Complexes and H-Bonding Dual Physically Cross-linked Networks. Li X; Li R; Liu Z; Gao X; Long S; Zhang G Macromol Rapid Commun; 2018 Dec; 39(23):e1800400. PubMed ID: 30101504 [TBL] [Abstract][Full Text] [Related]
7. Biodegradable dextran hydrogels crosslinked by stereocomplex formation for the controlled release of pharmaceutical proteins. Hennink WE; De Jong SJ; Bos GW; Veldhuis TF; van Nostrum CF Int J Pharm; 2004 Jun; 277(1-2):99-104. PubMed ID: 15158973 [TBL] [Abstract][Full Text] [Related]
8. Hydrogel-based drug carriers for controlled release of hydrophobic drugs and proteins. Peng K; Tomatsu I; Kros A J Control Release; 2011 Nov; 152 Suppl 1():e72-4. PubMed ID: 22195937 [No Abstract] [Full Text] [Related]
9. In situ forming chitosan hydrogels prepared via ionic/covalent co-cross-linking. Moura MJ; Faneca H; Lima MP; Gil MH; Figueiredo MM Biomacromolecules; 2011 Sep; 12(9):3275-84. PubMed ID: 21774479 [TBL] [Abstract][Full Text] [Related]
10. The control of cargo release from physically crosslinked hydrogels by crosslink dynamics. Appel EA; Forster RA; Rowland MJ; Scherman OA Biomaterials; 2014 Dec; 35(37):9897-9903. PubMed ID: 25239043 [TBL] [Abstract][Full Text] [Related]
11. Swelling-shrinking behavior of chemically cross-linked polypeptide gels from poly(α-L-lysine), poly(α-DL-lysine), poly(ɛ-L-lysine) and thermally prepared poly(lysine): effects of pH, temperature and additives in the solution. Kokufuta MK; Sato S; Kokufuta E Colloids Surf B Biointerfaces; 2011 Oct; 87(2):299-309. PubMed ID: 21684127 [TBL] [Abstract][Full Text] [Related]
12. Hydrogel Beads of Natural Polymers as a Potential Vehicle for Colon-Targeted Drug Delivery. Pushpamalar J; Sathasivam T; Gugler MC Methods Mol Biol; 2021; 2211():171-182. PubMed ID: 33336277 [TBL] [Abstract][Full Text] [Related]
13. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. Guo M; Pitet LM; Wyss HM; Vos M; Dankers PY; Meijer EW J Am Chem Soc; 2014 May; 136(19):6969-77. PubMed ID: 24803288 [TBL] [Abstract][Full Text] [Related]
14. Covalent and ionic co-cross-linking--an original way to prepare chitosan-gelatin hydrogels for biomedical applications. Jătariu Cadinoiu AN; Popa M; Curteanu S; Peptu CA J Biomed Mater Res A; 2011 Sep; 98(3):342-50. PubMed ID: 21626665 [TBL] [Abstract][Full Text] [Related]
16. Chemically Triggered Synthesis, Remodeling, and Degradation of Soft Materials. Sun X; Chwatko M; Lee DH; Bachman JL; Reuther JF; Lynd NA; Anslyn EV J Am Chem Soc; 2020 Feb; 142(8):3913-3922. PubMed ID: 32011873 [TBL] [Abstract][Full Text] [Related]
17. Silk fibroin/copolymer composite hydrogels for the controlled and sustained release of hydrophobic/hydrophilic drugs. Zhong T; Jiang Z; Wang P; Bie S; Zhang F; Zuo B Int J Pharm; 2015 Oct; 494(1):264-70. PubMed ID: 26283278 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. Khan F; Atif M; Haseen M; Kamal S; Khan MS; Shahid S; Nami SAA J Mater Chem B; 2022 Jan; 10(2):170-203. PubMed ID: 34889937 [TBL] [Abstract][Full Text] [Related]
19. Hydrogels based on the chemically crosslinked polyacrylic acid: biopharmaceutical characterization. Dimitrov M; Lambov N; Shenkov S; Dosseva V; Baranovski VY Acta Pharm; 2003 Mar; 53(1):25-31. PubMed ID: 14769249 [TBL] [Abstract][Full Text] [Related]
20. Biodegradable double cross-linked chitosan hydrogels for drug delivery: Impact of chemistry on rheological and pharmacological performance. Iglesias N; Galbis E; Valencia C; Díaz-Blanco MJ; Lacroix B; de-Paz MV Int J Biol Macromol; 2020 Dec; 165(Pt B):2205-2218. PubMed ID: 33058982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]