These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28606086)

  • 41. Single-stranded DNA binding proteins (SSBs) from prokaryotic transmissible plasmids.
    Ruvolo PP; Keating KM; Williams KR; Chase JW
    Proteins; 1991; 9(2):120-34. PubMed ID: 2008432
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetics and thermodynamics of salt-dependent T7 gene 2.5 protein binding to single- and double-stranded DNA.
    Shokri L; Marintcheva B; Eldib M; Hanke A; Rouzina I; Williams MC
    Nucleic Acids Res; 2008 Oct; 36(17):5668-77. PubMed ID: 18772224
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isolation and characterization of the gene encoding single-stranded-DNA-binding protein (SSB) from four marine Shewanella strains that differ in their temperature and pressure optima for growth.
    Chilukuri LN; Bartlett DH
    Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1163-1174. PubMed ID: 9141679
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and characterization of single-stranded-DNA-binding proteins from Thermus thermophilus and Thermus aquaticus - new arrangement of binding domains.
    Dąbrowski S; Olszewski M; Piątek R; Brillowska-Dąbrowska A; Konopa G; Kur J
    Microbiology (Reading); 2002 Oct; 148(Pt 10):3307-3315. PubMed ID: 12368464
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DNAgenie: accurate prediction of DNA-type-specific binding residues in protein sequences.
    Zhang J; Ghadermarzi S; Katuwawala A; Kurgan L
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415020
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of lipid-binding sites based on support vector machine and position specific scoring matrix.
    Xiong W; Guo Y; Li M
    Protein J; 2010 Aug; 29(6):427-31. PubMed ID: 20658312
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Using support vector machine and evolutionary profiles to predict antifreeze protein sequences.
    Zhao X; Ma Z; Yin M
    Int J Mol Sci; 2012; 13(2):2196-2207. PubMed ID: 22408447
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of membrane transport proteins and their substrate specificities using primary sequence information.
    Mishra NK; Chang J; Zhao PX
    PLoS One; 2014; 9(6):e100278. PubMed ID: 24968309
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Essential, Ubiquitous Single-Stranded DNA-Binding Proteins.
    Oliveira MT; Ciesielski GL
    Methods Mol Biol; 2021; 2281():1-21. PubMed ID: 33847949
    [TBL] [Abstract][Full Text] [Related]  

  • 50. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences.
    An JY; You ZH; Meng FR; Xu SJ; Wang Y
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature.
    Wu J; Liu H; Duan X; Ding Y; Wu H; Bai Y; Sun X
    Bioinformatics; 2009 Jan; 25(1):30-5. PubMed ID: 19008251
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel dual-binding function of a poly (C)-binding protein 3, transcriptional factor which binds the double-strand and single-stranded DNA sequence.
    Kang DH; Song KY; Choi HS; Law PY; Wei LN; Loh HH
    Gene; 2012 Jun; 501(1):33-8. PubMed ID: 22521865
    [TBL] [Abstract][Full Text] [Related]  

  • 53. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.
    Zaman R; Chowdhury SY; Rashid MA; Sharma A; Dehzangi A; Shatabda S
    Biomed Res Int; 2017; 2017():4590609. PubMed ID: 29270430
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PDRLGB: precise DNA-binding residue prediction using a light gradient boosting machine.
    Deng L; Pan J; Xu X; Yang W; Liu C; Liu H
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):522. PubMed ID: 30598073
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Single-Stranded DNA-Binding Proteins in the Archaea.
    Taib N; Gribaldo S; MacNeill SA
    Methods Mol Biol; 2021; 2281():23-47. PubMed ID: 33847950
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Prediction of DNA-binding residues from protein sequence information using random forests.
    Wang L; Yang MQ; Yang JY
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S1. PubMed ID: 19594868
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescent single-stranded DNA-binding protein from Plasmodium falciparum as a biosensor for single-stranded DNA.
    Chisty LT; Quaglia D; Webb MR
    PLoS One; 2018; 13(2):e0193272. PubMed ID: 29466468
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Distinct properties of Mycobacterium tuberculosis single-stranded DNA binding protein and its functional characterization in Escherichia coli.
    Handa P; Acharya N; Thanedar S; Purnapatre K; Varshney U
    Nucleic Acids Res; 2000 Oct; 28(19):3823-9. PubMed ID: 11000276
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification of DNA-binding proteins using support vector machines and evolutionary profiles.
    Kumar M; Gromiha MM; Raghava GP
    BMC Bioinformatics; 2007 Nov; 8():463. PubMed ID: 18042272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.