These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2445 related articles for article (PubMed ID: 28606179)
1. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton. Proietti T; Guigon E; Roby-Brami A; Jarrassé N J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the effects of the Arm Light Exoskeleton on movement execution and muscle activities: a pilot study on healthy subjects. Pirondini E; Coscia M; Marcheschi S; Roas G; Salsedo F; Frisoli A; Bergamasco M; Micera S J Neuroeng Rehabil; 2016 Jan; 13():9. PubMed ID: 26801620 [TBL] [Abstract][Full Text] [Related]
3. Constraining upper limb synergies of hemiparetic patients using a robotic exoskeleton in the perspective of neuro-rehabilitation. Crocher V; Sahbani A; Robertson J; Roby-Brami A; Morel G IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):247-57. PubMed ID: 22481836 [TBL] [Abstract][Full Text] [Related]
4. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices. Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397 [TBL] [Abstract][Full Text] [Related]
5. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke. Frisoli A; Procopio C; Chisari C; Creatini I; Bonfiglio L; Bergamasco M; Rossi B; Carboncini MC J Neuroeng Rehabil; 2012 Jun; 9():36. PubMed ID: 22681653 [TBL] [Abstract][Full Text] [Related]
6. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement. Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862 [TBL] [Abstract][Full Text] [Related]
7. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
8. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton. Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759 [TBL] [Abstract][Full Text] [Related]
9. Dissociating motor learning from recovery in exoskeleton training post-stroke. Schweighofer N; Wang C; Mottet D; Laffont I; Bakhti K; Reinkensmeyer DJ; Rémy-Néris O J Neuroeng Rehabil; 2018 Oct; 15(1):89. PubMed ID: 30290806 [TBL] [Abstract][Full Text] [Related]
10. Kinematic Synergy of Multi-DoF Movement in Upper Limb and Its Application for Rehabilitation Exoskeleton Motion Planning. Tang S; Chen L; Barsotti M; Hu L; Li Y; Wu X; Bai L; Frisoli A; Hou W Front Neurorobot; 2019; 13():99. PubMed ID: 31849635 [TBL] [Abstract][Full Text] [Related]
11. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181 [TBL] [Abstract][Full Text] [Related]
12. The Role of Robotic Path Assistance and Weight Support in Facilitating 3D Movements in Individuals With Poststroke Hemiparesis. Raghavan P; Bilaloglu S; Ali SZ; Jin X; Aluru V; Buckley MC; Tang A; Yousefi A; Stone J; Agrawal SK; Lu Y Neurorehabil Neural Repair; 2020 Feb; 34(2):134-147. PubMed ID: 31959040 [No Abstract] [Full Text] [Related]
13. Identification of inverse kinematic parameters in redundant systems: Towards quantification of inter-joint coordination in the human upper extremity. Khoramshahi M; Roby-Brami A; Parry R; Jarrassé N PLoS One; 2022; 17(12):e0278228. PubMed ID: 36525415 [TBL] [Abstract][Full Text] [Related]
14. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067 [TBL] [Abstract][Full Text] [Related]
15. A methodology to quantify alterations in human upper limb movement during co-manipulation with an exoskeleton. Jarrassé N; Tagliabue M; Robertson JV; Maiza A; Crocher V; Roby-Brami A; Morel G IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):389-97. PubMed ID: 20643611 [TBL] [Abstract][Full Text] [Related]
16. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696 [TBL] [Abstract][Full Text] [Related]
17. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: a retrospective study. Colombo R; Pisano F; Delconte C; Mazzone A; Grioni G; Castagna M; Bazzini G; Imarisio C; Maggioni G; Pistarini C Eur J Phys Rehabil Med; 2017 Apr; 53(2):240-248. PubMed ID: 27676203 [TBL] [Abstract][Full Text] [Related]
18. Assessing Wrist Movement With Robotic Devices. Rose CG; Pezent E; Kann CK; Deshpande AD; O'Malley MK IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1585-1595. PubMed ID: 29994401 [TBL] [Abstract][Full Text] [Related]
19. Preliminary Assessment of a Postural Synergy-Based Exoskeleton for Post-Stroke Upper Limb Rehabilitation. He C; Xiong CH; Chen ZJ; Fan W; Huang XL; Fu C IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1795-1805. PubMed ID: 34428146 [TBL] [Abstract][Full Text] [Related]
20. Exoskeleton and End-Effector Robots for Upper and Lower Limbs Rehabilitation: Narrative Review. Molteni F; Gasperini G; Cannaviello G; Guanziroli E PM R; 2018 Sep; 10(9 Suppl 2):S174-S188. PubMed ID: 30269804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]