These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 28606329)

  • 21. Discriminant analysis of Raman spectra for body fluid identification for forensic purposes.
    Sikirzhytski V; Virkler K; Lednev IK
    Sensors (Basel); 2010; 10(4):2869-84. PubMed ID: 22319277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advances in body fluid identification: MiRNA markers as powerful tool.
    Hamza M; Sankhyan D; Shukla S; Pandey P
    Int J Legal Med; 2024 Jul; 138(4):1223-1232. PubMed ID: 38467753
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection and identification of body fluid stains using antibody-nanoparticle conjugates.
    Frascione N; Thorogate R; Daniel B; Jickells S
    Analyst; 2012 Jan; 137(2):508-12. PubMed ID: 22117199
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The use of an alternative light source to detect semen in clinical forensic medical practice.
    Lincoln CA; McBride PM; Turbett GR; Garbin CD; MacDonald EJ
    J Clin Forensic Med; 2006 May; 13(4):215-8. PubMed ID: 16580244
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple Reaction Monitoring Tandem Mass Spectrometry Approach for the Identification of Biological Fluids at Crime Scene Investigations.
    Illiano A; Arpino V; Pinto G; Berti A; Verdoliva V; Peluso G; Pucci P; Amoresano A
    Anal Chem; 2018 May; 90(9):5627-5636. PubMed ID: 29579379
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Feasibility of a handheld near infrared device for the qualitative analysis of bloodstains.
    Morillas AV; Gooch J; Frascione N
    Talanta; 2018 Jul; 184():1-6. PubMed ID: 29674018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Rapid, Confirmatory Test for Body Fluid Identification.
    Young ST; Moore JR; Bishop CP
    J Forensic Sci; 2018 Mar; 63(2):511-516. PubMed ID: 28718918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Benchmarking forensic rulers and photographic techniques.
    Barns J; Kruger E; Tennant M
    J Forensic Leg Med; 2016 Jul; 41():5-9. PubMed ID: 27107561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Detection of latent bloodstains beneath painted surfaces using reflected infrared photography.
    Farrar A; Porter G; Renshaw A
    J Forensic Sci; 2012 Sep; 57(5):1190-8. PubMed ID: 22845038
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Background correction in forensic photography. I. Photography of blood under conditions of non-uniform illumination or variable substrate color--theoretical aspects and proof of concept.
    Wagner JH; Miskelly GM
    J Forensic Sci; 2003 May; 48(3):593-603. PubMed ID: 12762530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancement of seminal stains using background correction algorithm with colour filters.
    Lee WC; Khoo BE; Abdullah AFL
    Forensic Sci Int; 2016 Jun; 263():1-9. PubMed ID: 27061146
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recovery of trace evidence in forensic archaeology and the use of alternate light sources (ALS).
    Harte A; Cassella JP; McCullagh NA
    Forensic Sci Int; 2020 Nov; 316():110475. PubMed ID: 32947216
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Differentiation of Menstrual from Venous Blood and Other Body Fluids on Various Substrates Using ATR FT-IR Spectroscopy.
    Quinn AA; Elkins KM
    J Forensic Sci; 2017 Jan; 62(1):197-204. PubMed ID: 27874177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct Y-STR amplification of body fluids deposited on commonly found crime scene substrates.
    Dargay A; Roy R
    J Forensic Leg Med; 2016 Apr; 39():50-60. PubMed ID: 26854850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Application of fluorescent substrates to the in situ detection of prostate specific antigen.
    Gooch J; Daniel B; Frascione N
    Talanta; 2014 Jul; 125():210-4. PubMed ID: 24840435
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Revealing the location of semen, vaginal fluid and urine in stained evidence through near infrared chemical imaging.
    Zapata F; Ortega-Ojeda FE; García-Ruiz C
    Talanta; 2017 May; 166():292-299. PubMed ID: 28213237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advancing forensic RNA typing: On non-target secretions, a nasal mucosa marker, a differential co-extraction protocol and the sensitivity of DNA and RNA profiling.
    van den Berge M; Bhoelai B; Harteveld J; Matai A; Sijen T
    Forensic Sci Int Genet; 2016 Jan; 20():119-129. PubMed ID: 26590860
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of mark enhancement techniques on the subsequent detection of saliva.
    McAllister P; Graham E; Deacon P; Farrugia KJ
    Sci Justice; 2016 Sep; 56(5):305-320. PubMed ID: 27702446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The use of crime scene detection dogs to locate semen stains on different types of fabric.
    van Dam A; Schoon A; Wierda SF; Heeringa E; Aalders CG
    Forensic Sci Int; 2019 Sep; 302():109907. PubMed ID: 31401415
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of infrared radiation, solar radiation, and burial exposure on the efficacy of forensic immunoassay testing for blood, semen, and saliva.
    Kirchner CL; Conlan XA; Durdle A
    Forensic Sci Int; 2024 Aug; 361():112106. PubMed ID: 38924941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.