These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 28606524)

  • 1. Supramolecular structure of methyl cellulose and lambda- and kappa-carrageenan in water: SAXS study using the string-of-beads model.
    Dogsa I; Cerar J; Jamnik A; Tomšič M
    Carbohydr Polym; 2017 Sep; 172():184-196. PubMed ID: 28606524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Testing Classical Approach to Polymer Solutions on SAXS Data of λ-Carrageenan, κ-Carrageenan and Methylcellulose Systems.
    Cerar J; Jamnik A; Tomšič M
    Acta Chim Slov; 2015; 62(3):498-508. PubMed ID: 26454582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amorphous supramolecular structure of carboxymethyl cellulose in aqueous solution at different pH values as determined by rheology, small angle X-ray and light scattering.
    Dogsa I; Tomšič M; Orehek J; Benigar E; Jamnik A; Stopar D
    Carbohydr Polym; 2014 Oct; 111():492-504. PubMed ID: 25037380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical data on aqueous polymeric systems of methyl cellulose and lambda- and kappa-carrageenan: SAXS, rheological, densitometry, and sound velocity measurements.
    Cerar J; Dogsa I; Jamnik A; Tomšič M
    Data Brief; 2017 Dec; 15():427-438. PubMed ID: 29062866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thermoreversible double gel: characterization of a methylcellulose and kappa-carrageenan mixed system in water by SAXS, DSC and rheology.
    Tomsic M; Prossnigg F; Glatter O
    J Colloid Interface Sci; 2008 Jun; 322(1):41-50. PubMed ID: 18417143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Analysis of Polysaccharide Networks by Transmission Electron Microscopy: Comparison with Small-Angle X-ray Scattering.
    Hernandez-Cerdan P; Mansel BW; Leis A; Lundin L; Williams MAK
    Biomacromolecules; 2018 Mar; 19(3):989-995. PubMed ID: 29381344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Structure and Mechanical Performance of κ-Carrageenan-Gelatin Gel.
    Makarova AO; Derkach SR; Kadyirov AI; Ziganshina SA; Kazantseva MA; Zueva OS; Gubaidullin AT; Zuev YF
    Polymers (Basel); 2022 Oct; 14(20):. PubMed ID: 36297925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel gelling systems of kappa-, iota- and lambda-carrageenans and their composite gels with cellulose using ionic liquid.
    Prasad K; Kaneko Y; Kadokawa J
    Macromol Biosci; 2009 Apr; 9(4):376-82. PubMed ID: 19003847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macro- and Microstructural Evolution during Drying of Regenerated Cellulose Beads.
    Li H; Kruteva M; Mystek K; Dulle M; Ji W; Pettersson T; Wågberg L
    ACS Nano; 2020 Jun; 14(6):6774-6784. PubMed ID: 32383585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscopy imaging of carrageenans from red algae of Gigartinaceae and Tichocarpaceae families.
    Sokolova EV; Chusovitin EA; Barabanova AO; Balagan SA; Galkin NG; Yermak IM
    Carbohydr Polym; 2013 Apr; 93(2):458-65. PubMed ID: 23499083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin structure revealed by X-ray scattering analysis and computational modeling.
    Maeshima K; Imai R; Hikima T; Joti Y
    Methods; 2014 Dec; 70(2-3):154-61. PubMed ID: 25168089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The water binding behavior of kappa-carrageenan determined by three different methods.
    Thommes M; Ely DR; Kleinebudde P
    Pharm Dev Technol; 2009; 14(3):249-58. PubMed ID: 19519179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the structural properties of simple aldehydes: a Monte Carlo and small-angle X-ray scattering study.
    Lajovic A; Tomsic M; Fritz-Popovski G; Vlcek L; Jamnik A
    J Phys Chem B; 2009 Jul; 113(28):9429-35. PubMed ID: 19545124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pepsi-SAXS: an adaptive method for rapid and accurate computation of small-angle X-ray scattering profiles.
    Grudinin S; Garkavenko M; Kazennov A
    Acta Crystallogr D Struct Biol; 2017 May; 73(Pt 5):449-464. PubMed ID: 28471369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfibrillar structure of PGG-glucan in aqueous solution as triple-helix aggregates by small angle x-ray scattering.
    Gawronski M; Park JT; Magee AS; Conrad H
    Biopolymers; 1999 Nov; 50(6):569-78. PubMed ID: 10508959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of quaternary structure from X-ray scattering by equilibrium mixtures of biological macromolecules.
    Petoukhov MV; Billas IM; Takacs M; Graewert MA; Moras D; Svergun DI
    Biochemistry; 2013 Oct; 52(39):6844-55. PubMed ID: 24000896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids.
    Nguyen HT; Pabit SA; Meisburger SP; Pollack L; Case DA
    J Chem Phys; 2014 Dec; 141(22):22D508. PubMed ID: 25494779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionically cross-linked carrageenan-alginate hydrogel beads.
    Mohamadnia Z; Zohuriaan-Mehr MJ; Kabiri K; Jamshidi A; Mobedi H
    J Biomater Sci Polym Ed; 2008; 19(1):47-59. PubMed ID: 18177553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local structure of Ca(2+) induced hydrogels of alginate-oligoguluronate blends determined by small-angle-X-ray scattering.
    Yuguchi Y; Hasegawa A; Padoł AM; Draget KI; Stokke BT
    Carbohydr Polym; 2016 Nov; 152():532-540. PubMed ID: 27516301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure modeling from small angle X-ray scattering data with elastic network normal mode analysis.
    Miyashita O; Gorba C; Tama F
    J Struct Biol; 2011 Mar; 173(3):451-60. PubMed ID: 20850542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.