These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 28606733)

  • 1. Tumor-derived factors affecting immune cells.
    Russo V; Protti MP
    Cytokine Growth Factor Rev; 2017 Aug; 36():79-87. PubMed ID: 28606733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tumor Immune Microenvironment and Its Related miRNAs in Tumor Progression.
    Xing Y; Ruan G; Ni H; Qin H; Chen S; Gu X; Shang J; Zhou Y; Tao X; Zheng L
    Front Immunol; 2021; 12():624725. PubMed ID: 34084160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intratumoral cytokines/chemokines/growth factors and tumor infiltrating dendritic cells: friends or enemies?
    Shurin MR; Shurin GV; Lokshin A; Yurkovetsky ZR; Gutkin DW; Chatta G; Zhong H; Han B; Ferris RL
    Cancer Metastasis Rev; 2006 Sep; 25(3):333-56. PubMed ID: 17029028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recruiting T cells in cancer immunotherapy.
    Yost KE; Chang HY; Satpathy AT
    Science; 2021 Apr; 372(6538):130-131. PubMed ID: 33833111
    [No Abstract]   [Full Text] [Related]  

  • 5. Cellular immunotherapy of cancer: an overview and future directions.
    Tao Z; Li S; Ichim TE; Yang J; Riordan N; Yenugonda V; Babic I; Kesari S
    Immunotherapy; 2017 Jun; 9(7):589-606. PubMed ID: 28595516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ILT4 functions as a potential checkpoint molecule for tumor immunotherapy.
    Gao A; Sun Y; Peng G
    Biochim Biophys Acta Rev Cancer; 2018 Apr; 1869(2):278-285. PubMed ID: 29649510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory T cells in cancer; can they be controlled?
    Adeegbe DO; Nishikawa H
    Immunotherapy; 2015; 7(8):843-6. PubMed ID: 26316166
    [No Abstract]   [Full Text] [Related]  

  • 8. Mechanisms regulating T-cell infiltration and activity in solid tumors.
    Lanitis E; Dangaj D; Irving M; Coukos G
    Ann Oncol; 2017 Dec; 28(suppl_12):xii18-xii32. PubMed ID: 29045511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting Tertiary Lymphoid Structures for Tumor Immunotherapy.
    Tang H; Qiu X; Timmerman C; Fu YX
    Methods Mol Biol; 2018; 1845():275-286. PubMed ID: 30141019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating the tumor microenvironment ex vivo for enhanced expansion of tumor-infiltrating lymphocytes for adoptive cell therapy.
    Chacon JA; Sarnaik AA; Chen JQ; Creasy C; Kale C; Robinson J; Weber J; Hwu P; Pilon-Thomas S; Radvanyi L
    Clin Cancer Res; 2015 Feb; 21(3):611-21. PubMed ID: 25472998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. γδ T Cells: Unexpected Regulators of Cancer Development and Progression.
    Fleming C; Morrissey S; Cai Y; Yan J
    Trends Cancer; 2017 Aug; 3(8):561-570. PubMed ID: 28780933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming tumor-mediated immunosuppression.
    Schlößer HA; Theurich S; Shimabukuro-Vornhagen A; Holtick U; Stippel DL; von Bergwelt-Baildon M
    Immunotherapy; 2014; 6(9):973-88. PubMed ID: 25341119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells.
    Shen H; Sun T; Hoang HH; Burchfield JS; Hamilton GF; Mittendorf EA; Ferrari M
    Semin Immunol; 2017 Dec; 34():114-122. PubMed ID: 28947107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A distinct innate lymphoid cell population regulates tumor-associated T cells.
    Crome SQ; Nguyen LT; Lopez-Verges S; Yang SY; Martin B; Yam JY; Johnson DJ; Nie J; Pniak M; Yen PH; Milea A; Sowamber R; Katz SR; Bernardini MQ; Clarke BA; Shaw PA; Lang PA; Berman HK; Pugh TJ; Lanier LL; Ohashi PS
    Nat Med; 2017 Mar; 23(3):368-375. PubMed ID: 28165478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.
    Ohshio Y; Teramoto K; Hanaoka J; Tezuka N; Itoh Y; Asai T; Daigo Y; Ogasawara K
    Cancer Sci; 2015 Feb; 106(2):134-42. PubMed ID: 25483888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The emerging Protumor role of γδ T lymphocytes: implications for cancer immunotherapy.
    Rei M; Pennington DJ; Silva-Santos B
    Cancer Res; 2015 Mar; 75(5):798-802. PubMed ID: 25660949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escape mechanisms in tumor immunity: an update.
    Müller L; Kiessling R; Rees RC; Pawelec G
    J Environ Pathol Toxicol Oncol; 2002; 21(4):277-330. PubMed ID: 12510961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia-Driven Immune Escape in the Tumor Microenvironment.
    Vito A; El-Sayes N; Mossman K
    Cells; 2020 Apr; 9(4):. PubMed ID: 32316260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of CD40 Agonism and CSF-1R Blockade Reconditions Tumor-Associated Macrophages and Drives Potent Antitumor Immunity.
    Wiehagen KR; Girgis NM; Yamada DH; Smith AA; Chan SR; Grewal IS; Quigley M; Verona RI
    Cancer Immunol Res; 2017 Dec; 5(12):1109-1121. PubMed ID: 29097420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autologous Tumor Cell Lysate-Loaded Dendritic Cell Vaccine Inhibited Tumor Progression in an Orthotopic Murine Model for Hepatocellular Carcinoma.
    Wang Q; Luan W; Warren L; Kadri H; Kim KW; Goz V; Blank S; Isabel Fiel M; Hiotis SP
    Ann Surg Oncol; 2016 Dec; 23(Suppl 5):574-582. PubMed ID: 26786094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.