These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 28606754)
1. Deletion of acetate transporter gene ADY2 improved tolerance of Saccharomyces cerevisiae against multiple stresses and enhanced ethanol production in the presence of acetic acid. Zhang M; Zhang K; Mehmood MA; Zhao ZK; Bai F; Zhao X Bioresour Technol; 2017 Dec; 245(Pt B):1461-1468. PubMed ID: 28606754 [TBL] [Abstract][Full Text] [Related]
2. Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Zhang MM; Zhao XQ; Cheng C; Bai FW Biotechnol J; 2015 Dec; 10(12):1903-11. PubMed ID: 26479519 [TBL] [Abstract][Full Text] [Related]
3. Deletion of JJJ1 improves acetic acid tolerance and bioethanol fermentation performance of Saccharomyces cerevisiae strains. Wu X; Zhang L; Jin X; Fang Y; Zhang K; Qi L; Zheng D Biotechnol Lett; 2016 Jul; 38(7):1097-106. PubMed ID: 27067354 [TBL] [Abstract][Full Text] [Related]
4. [Improvement of inhibitors tolerance of Saccharomyces cerevisiae by overexpressing of long chain sphingoid kinases encoding gene LCB4]. He Y; Zi L; Zhang B; Xu J; Wang D; Bai F Sheng Wu Gong Cheng Xue Bao; 2018 Jun; 34(6):906-915. PubMed ID: 29943536 [TBL] [Abstract][Full Text] [Related]
5. Improved ethanol production from xylose in the presence of acetic acid by the overexpression of the HAA1 gene in Saccharomyces cerevisiae. Sakihama Y; Hasunuma T; Kondo A J Biosci Bioeng; 2015 Mar; 119(3):297-302. PubMed ID: 25282639 [TBL] [Abstract][Full Text] [Related]
6. Ady2p is essential for the acetate permease activity in the yeast Saccharomyces cerevisiae. Paiva S; Devaux F; Barbosa S; Jacq C; Casal M Yeast; 2004 Feb; 21(3):201-10. PubMed ID: 14968426 [TBL] [Abstract][Full Text] [Related]
7. [Improvement of acetic acid tolerance and fermentation performance of industrial Saccharomyces cerevisiae by overexpression of flocculent gene FLO1 and FLO1c]. Du Z; Cheng Y; Zhu H; He X; Zhang B Sheng Wu Gong Cheng Xue Bao; 2015 Feb; 31(2):231-41. PubMed ID: 26062344 [TBL] [Abstract][Full Text] [Related]
8. Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae. Cheng C; Zhao X; Zhang M; Bai F FEMS Yeast Res; 2016 Mar; 16(2):fow010. PubMed ID: 26851403 [TBL] [Abstract][Full Text] [Related]
9. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation. Cheng C; Zhang M; Xue C; Bai F; Zhao X J Biosci Bioeng; 2017 Feb; 123(2):141-146. PubMed ID: 27576171 [TBL] [Abstract][Full Text] [Related]
10. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae. Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879 [TBL] [Abstract][Full Text] [Related]
11. Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance. Ma C; Wei X; Sun C; Zhang F; Xu J; Zhao X; Bai F Appl Microbiol Biotechnol; 2015 Mar; 99(5):2441-9. PubMed ID: 25698512 [TBL] [Abstract][Full Text] [Related]
12. Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability. Gurdo N; Novelli Poisson GF; Juárez ÁB; Rios de Molina MC; Galvagno MA J Appl Microbiol; 2018 Sep; 125(3):766-776. PubMed ID: 29770550 [TBL] [Abstract][Full Text] [Related]
13. Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose. Ismail KS; Sakamoto T; Hasunuma T; Zhao XQ; Kondo A Biotechnol J; 2014 Dec; 9(12):1519-25. PubMed ID: 24924214 [TBL] [Abstract][Full Text] [Related]
14. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae. Geng P; Zhang L; Shi GY World J Microbiol Biotechnol; 2017 May; 33(5):94. PubMed ID: 28405910 [TBL] [Abstract][Full Text] [Related]
15. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Fujitomi K; Sanda T; Hasunuma T; Kondo A Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of the transcription factor mig1 (YGL035C) in Saccharomyces cerevisiae improves tolerance towards monocarboxylic weak acids: acetic, formic and levulinic acid. Balderas-Hernández VE; Correia K; Mahadevan R J Ind Microbiol Biotechnol; 2018 Aug; 45(8):735-751. PubMed ID: 29876685 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Mira NP; Palma M; Guerreiro JF; Sá-Correia I Microb Cell Fact; 2010 Oct; 9():79. PubMed ID: 20973990 [TBL] [Abstract][Full Text] [Related]
18. Enhanced acetic acid stress tolerance and ethanol production in Zhang MM; Xiong L; Tang YJ; Mehmood MA; Zhao ZK; Bai FW; Zhao XQ Biotechnol Biofuels; 2019; 12():116. PubMed ID: 31168321 [TBL] [Abstract][Full Text] [Related]
19. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation. Aghazadeh M; Ladisch MR; Engelberth AS Biotechnol Prog; 2016 Jul; 32(4):929-37. PubMed ID: 27090191 [TBL] [Abstract][Full Text] [Related]
20. Improved Acetic Acid Resistance in Saccharomyces cerevisiae by Overexpression of the WHI2 Gene Identified through Inverse Metabolic Engineering. Chen Y; Stabryla L; Wei N Appl Environ Microbiol; 2016 Jan; 82(7):2156-2166. PubMed ID: 26826231 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]