BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28607049)

  • 21. Crystal structure of Escherichia coli thioredoxin reductase refined at 2 A resolution. Implications for a large conformational change during catalysis.
    Waksman G; Krishna TS; Williams CH; Kuriyan J
    J Mol Biol; 1994 Feb; 236(3):800-16. PubMed ID: 8114095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of the redox sensor domain of Azotobacter vinelandii NifL at atomic resolution: signaling, dimerization, and mechanism.
    Key J; Hefti M; Purcell EB; Moffat K
    Biochemistry; 2007 Mar; 46(12):3614-23. PubMed ID: 17319691
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Receptor activation of NADPH oxidases.
    Petry A; Weitnauer M; Görlach A
    Antioxid Redox Signal; 2010 Aug; 13(4):467-87. PubMed ID: 20001746
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic regulation of NADPH oxidase 5 by intracellular heme levels and cellular chaperones.
    Sweeny EA; Schlanger S; Stuehr DJ
    Redox Biol; 2020 Sep; 36():101656. PubMed ID: 32738790
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A subset of N-substituted phenothiazines inhibits NADPH oxidases.
    Seredenina T; Chiriano G; Filippova A; Nayernia Z; Mahiout Z; Fioraso-Cartier L; Plastre O; Scapozza L; Krause KH; Jaquet V
    Free Radic Biol Med; 2015 Sep; 86():239-49. PubMed ID: 26013584
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ROS signaling by NADPH oxidase 5 modulates the proliferation and survival of prostate carcinoma cells.
    Höll M; Koziel R; Schäfer G; Pircher H; Pauck A; Hermann M; Klocker H; Jansen-Dürr P; Sampson N
    Mol Carcinog; 2016 Jan; 55(1):27-39. PubMed ID: 25559363
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NADPH oxidase: its potential role in promotion of pulmonary arterial hypertension.
    Peng JJ; Liu B; Xu JY; Peng J; Luo XJ
    Naunyn Schmiedebergs Arch Pharmacol; 2017 Apr; 390(4):331-338. PubMed ID: 28190244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel Nox homologues in the vasculature: focusing on Nox4 and Nox5.
    Montezano AC; Burger D; Ceravolo GS; Yusuf H; Montero M; Touyz RM
    Clin Sci (Lond); 2011 Feb; 120(4):131-41. PubMed ID: 21039341
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localizing NADPH oxidase-derived ROS.
    Ushio-Fukai M
    Sci STKE; 2006 Aug; 2006(349):re8. PubMed ID: 16926363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Importance of NADPH Oxidases and Redox Signaling in Angiogenesis.
    Prieto-Bermejo R; Hernández-Hernández A
    Antioxidants (Basel); 2017 May; 6(2):. PubMed ID: 28505091
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The crystal structure of NADPH:ferredoxin reductase from Azotobacter vinelandii.
    Sridhar Prasad G; Kresge N; Muhlberg AB; Shaw A; Jung YS; Burgess BK; Stout CD
    Protein Sci; 1998 Dec; 7(12):2541-9. PubMed ID: 9865948
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The emerging role of NADPH oxidase NOX5 in vascular disease.
    Jha JC; Watson AMD; Mathew G; de Vos LC; Jandeleit-Dahm K
    Clin Sci (Lond); 2017 May; 131(10):981-990. PubMed ID: 28473473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MnmE and substrate.
    Meyer S; Scrima A; Versées W; Wittinghofer A
    J Mol Biol; 2008 Jul; 380(3):532-47. PubMed ID: 18565343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NOX isoforms and reactive oxygen species in vascular health.
    Touyz RM; Briones AM; Sedeek M; Burger D; Montezano AC
    Mol Interv; 2011 Feb; 11(1):27-35. PubMed ID: 21441119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Redox-mediated signal transduction by cardiovascular Nox NADPH oxidases.
    Brandes RP; Weissmann N; Schröder K
    J Mol Cell Cardiol; 2014 Aug; 73():70-9. PubMed ID: 24560815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation of Са2+-Binding Domain of NADPH Oxidase 5 (NOX5): Toward Understanding the Mechanism of Inactivation of NOX5 by ROS.
    Petrushanko IY; Lobachev VM; Kononikhin AS; Makarov AA; Devred F; Kovacic H; Kubatiev AA; Tsvetkov PO
    PLoS One; 2016; 11(7):e0158726. PubMed ID: 27391469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of cell proliferation by NADPH oxidase-mediated signaling: potential roles in tissue repair, regenerative medicine and tissue engineering.
    Chan EC; Jiang F; Peshavariya HM; Dusting GJ
    Pharmacol Ther; 2009 May; 122(2):97-108. PubMed ID: 19285105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of p-hydroxybenzoate hydroxylase reconstituted with the modified FAD present in alcohol oxidase from methylotrophic yeasts: evidence for an arabinoflavin.
    van Berkel WJ; Eppink MH; Schreuder HA
    Protein Sci; 1994 Dec; 3(12):2245-53. PubMed ID: 7756982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NADPH oxidases in fungi: diverse roles of reactive oxygen species in fungal cellular differentiation.
    Takemoto D; Tanaka A; Scott B
    Fungal Genet Biol; 2007 Nov; 44(11):1065-76. PubMed ID: 17560148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.