BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 28607049)

  • 41. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation.
    Wang SB; Jang JY; Chae YH; Min JH; Baek JY; Kim M; Park Y; Hwang GS; Ryu JS; Chang TS
    Free Radic Biol Med; 2015 Jun; 83():41-53. PubMed ID: 25645952
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Crystal structures of two aromatic hydroxylases involved in the early tailoring steps of angucycline biosynthesis.
    Koskiniemi H; Metsä-Ketelä M; Dobritzsch D; Kallio P; Korhonen H; Mäntsälä P; Schneider G; Niemi J
    J Mol Biol; 2007 Sep; 372(3):633-48. PubMed ID: 17669423
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptional regulation of NOX genes express ion in human breast adenocarcinoma MCF-7 cells is modulated by adaptor protein Ruk/CIN 85.
    Bazalii AV; Horak IR; Pasi chn yk GV; Komisarenko SV; Drobot LB
    Ukr Biochem J; 2016; 88(1):119-25. PubMed ID: 29227594
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reactive oxygen species and endothelial function--role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases.
    Montezano AC; Touyz RM
    Basic Clin Pharmacol Toxicol; 2012 Jan; 110(1):87-94. PubMed ID: 21883939
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal structure of a membrane-bound l-amino acid deaminase from Proteus vulgaris.
    Ju Y; Tong S; Gao Y; Zhao W; Liu Q; Gu Q; Xu J; Niu L; Teng M; Zhou H
    J Struct Biol; 2016 Sep; 195(3):306-315. PubMed ID: 27422658
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Bacterial Multidomain NAD-Independent d-Lactate Dehydrogenase Utilizes Flavin Adenine Dinucleotide and Fe-S Clusters as Cofactors and Quinone as an Electron Acceptor for d-Lactate Oxidization.
    Jiang T; Guo X; Yan J; Zhang Y; Wang Y; Zhang M; Sheng B; Ma C; Xu P; Gao C
    J Bacteriol; 2017 Nov; 199(22):. PubMed ID: 28847921
    [TBL] [Abstract][Full Text] [Related]  

  • 48. NADPH Oxidases: Redox Regulators of Stem Cell Fate and Function.
    Maraldi T; Angeloni C; Prata C; Hrelia S
    Antioxidants (Basel); 2021 Jun; 10(6):. PubMed ID: 34204425
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nox family NADPH oxidases: Molecular mechanisms of activation.
    Brandes RP; Weissmann N; Schröder K
    Free Radic Biol Med; 2014 Nov; 76():208-26. PubMed ID: 25157786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology.
    Manea A
    Cell Tissue Res; 2010 Dec; 342(3):325-39. PubMed ID: 21052718
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dysfunction of endothelial progenitor cells in hyperlipidemic rats involves the increase of NADPH oxidase derived reactive oxygen species production.
    Li TB; Zhang JJ; Liu B; Luo XJ; Ma QL; Peng J
    Can J Physiol Pharmacol; 2017 May; 95(5):474-480. PubMed ID: 28177697
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NADPH OXIDASE: STRUCTURE AND ACTIVATION MECHANISMS (REVIEW). NOTE I.
    Filip-Ciubotaru F; Manciuc C; Stoleriu G; Foia L
    Rev Med Chir Soc Med Nat Iasi; 2016; 120(1):29-33. PubMed ID: 27125069
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NADPH Oxidases and Measurement of Reactive Oxygen Species.
    Amanso A; Lyle AN; Griendling KK
    Methods Mol Biol; 2017; 1527():219-232. PubMed ID: 28116720
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular basis for Rac2 regulation of phagocyte NADPH oxidase.
    Diebold BA; Bokoch GM
    Nat Immunol; 2001 Mar; 2(3):211-5. PubMed ID: 11224519
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Noise-induced changes in expression levels of NADPH oxidases in the cochlea.
    Vlajkovic SM; Lin SC; Wong AC; Wackrow B; Thorne PR
    Hear Res; 2013 Oct; 304():145-52. PubMed ID: 23899412
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a caffeic acid-phthalimide hybrid compound for NADPH oxidase inhibition.
    Dos Santos WH; Yoguim MI; Daré RG; da Silva-Filho LC; Lautenschlager SOS; Ximenes VF
    RSC Adv; 2021 May; 11(29):17880-17890. PubMed ID: 35480205
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanistic Insights on Heme-to-Heme Transmembrane Electron Transfer Within NADPH Oxydases From Atomistic Simulations.
    Wu X; Hénin J; Baciou L; Baaden M; Cailliez F; de la Lande A
    Front Chem; 2021; 9():650651. PubMed ID: 34017816
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Plasma Membrane: A Platform for Intra- and Intercellular Redox Signaling.
    Nordzieke DE; Medraño-Fernandez I
    Antioxidants (Basel); 2018 Nov; 7(11):. PubMed ID: 30463362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. NOX family NADPH oxidases: do they have built-in proton channels?
    Maturana A; Krause KH; Demaurex N
    J Gen Physiol; 2002 Dec; 120(6):781-6. PubMed ID: 12451048
    [No Abstract]   [Full Text] [Related]  

  • 60. In silico sequence analysis reveals new characteristics of fungal NADPH oxidase genes.
    Détry N; Choi J; Kuo HC; Asiegbu FO; Lee YH
    Mycobiology; 2014 Sep; 42(3):241-8. PubMed ID: 25346600
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.